线性代数,已知二次型,求标准形

2024-11-16 00:21:14
推荐回答(1个)
回答(1):

f(x)对应的矩阵为:
2 0 0
0 2 1
0 1 a
| 2-y 0 0 |
|A-yE|= | 0 2-y 1 |=(2-y)(2-y)(a-y)-(2-y)=0 H
| 0 1 a-y|
其中1是F(X)的一个特征值带入:(2-1)(2-1)(a-1)-(2-y)=a-1-1=0,所以,a=2
带回H式有:(2-y)(2-y)(2-y)-(2-y)=[(2-y)^2-1](2-y)=(3-4y+y^2)(2-y)=(y-3)(y-1)(y-2)
所以F(X)的全部特征值为:1,2,3
标准型F(X)=1*Y^2+2*Y^2+3*Y^2
我刚考完线代,还记得复习的内容。
若还有疑问请追问,若解决了您的问题,望采纳,我需要升级,
互助,希望能帮到您。O(∩_∩)O谢谢!