数学周刊鲁教七年级版第42期答案

2024-11-16 13:27:34
推荐回答(1个)
回答(1):

1*2+2*3+3*4+……+n(n+1) =(1^2+1)+(2^2+2)+(3^2+3)+……+(n^2+n) =(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n) =[n(n+1)(2n+1)]/6 +[n(n+1)]/2 =[n(n+1)(5n+2)]/6 1*2+2*3+3*4+···100*101 =1^2+1+2^2+2+3^2+3+···+100^2+100 =1^2+2^2+···+100^2+1+2+···+100 利用下面公式 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6 1+2+3+···+n=n(n+1)/2 在上式中,n=100,代入得, 1*2+2*3+3*4+···100*101=100*101*201/6+100*101/2=343400