高等数学! 求解!如图! 定积分中 积分上下限是怎么变换 第一步的换元积分 上下限为什么要变

2024-10-28 09:33:23
推荐回答(5个)
回答(1):

解答:

开始的变量是t,换元后的变量是u,积分过程中x始终视为常数。

换元前t的变化范围是(0,x)

如今,x-t=u

当t=0时,u=x

当t=x时,u=0

所以换元后u的变化范围是(x,0)

最后为了把-du中的负号消去,于是就将积分上下限换下位置,变回(0,x)

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

回答(2):

解答:
开始的变量是t,换元后的变量是u,积分过程中x始终视为常数。
换元前t的变化范围是(0,x)
如今,x-t=u
当t=0时,u=x
当t=x时,u=0
所以换元后u的变化范围是(x,0)
最后为了把-du中的负号消去,于是就将积分上下限换下位置,变回(0,x)

回答(3):

一个是x的上下限 一个是u的上下限 不一样所以要换

回答(4):

相当于自变量变了,上下限是自变量的范围

回答(5):

x-t=u t=x-u dt=-du t=0 x-u=0 u=x t=x x-u=x u=0