∫1⼀1+√2x+1dx求不定积分 需要过程

2024-11-15 09:17:24
推荐回答(1个)
回答(1):

∫1/(1+√(2x+1))dx
√(2x+1)=t (2x+1)=t^2 2dx=2tdt
∫1/(1+√(2x+1))dx
=∫tdt/(1+t)
=∫(t+1-1)dt/(1+t)
=∫(1-1/(1+t))dt
=t-ln(1+t)+C
=√(2x+1)-ln(1+√(2x+1))+C