0<=a(n+1)-a(n) = 2[a(n)]^2 + 3a(n) + m - a(n) = 2[a(n)]^2 + 2a(n) + m,将a(n)视为变量x,则,a(n+1)>=a(n)恒成立,意味着,变量x的抛物线y=2x^2 + 2x + m永远在x轴上方。。二次方程 0 = 2x^2 + 2x + m至多有1个实根。因此,0>= Delta = 2^2 - 4*2*m = 4 - 8m = 8(1/2 - m), m >= 1/2.所以,m的取值范围是,m>=1/2.