已知sinα =4⼀5,π⼀2<α<π(1)求tanα的值;(2)(cos2α+sin2α+1)⼀[1+tan(π-2α)]

2025-01-05 10:11:37
推荐回答(2个)
回答(1):

解:
(1)
π/2<α<π,则cosα<0
于是
cosα=-√(1-sin²α)=-√(1-16/25)=-3/5
tanα=sinα /cosα=4/5 /(-3/5)=-4/3
(2)
tan(2α)=2tanα/(1+tan²α)=2×(-4/3)/(1+16/9)=-8/3/(25/9)=-24/25
于是
(cos2α+sin2α+1)/[1+tan(π-2α)]
=(2cos²α-1+2sinαcosα+1)/[1-tan(2α)]
=(2×9/25-1-2×4/5×3/5+1)/[1+24/25]
=(18/25-1-24/25+1)/[49/25]
=(-6/25)/[49/25]
=-6/49

回答(2):