已知二次函数y=ax눀+bx+c的图像经过点A(-1,0)、点B(3,0),与x轴交于点C(0,-3)

2024-11-16 10:47:23
推荐回答(2个)
回答(1):

1、∵x1+x2=-b/a=-1+3=2 ∴b=-2a 又∵x1*x2=c/a=(-1)*3=-3 ∴c=-3a
∴y=ax²-2ax-3a
将C(3,0)带入二次函数方程得:-3a=-3,a=1
∴y=x²-2x-3
2、∵y=x²-2x-3 =(x-1)²-4 ∴M(1,-4)
将C(3,0)、M(1,-4)带入直线方程得:
3k+b=0 ①
k+b=-4 ②
∴k=2 b=-6,即y=2x-6
3、∵y=(x-1)²-4 ∴x对称=1
设N(1,y)
∵C(3,0)、M(1,-4) ∴CM直线方程:y-2x+6=0
∴N点到CM直线距离为:d=│y+4│/√5,则d²=(y+4)²/5
∵圆N与直线CM相切,圆经过A、B两点 ∴d²=AN²,即(y+4)²/5=y²+4
∴y=1,即N(1,1)

回答(2):

由条件可设y=a(x+1)(x-3),当x=0时y=-3a=3,a=-1
y=-(x+1)(x-3)
M(1,4)C(0,-3)两点代入方程易得b=-3,k=7,y=7x-3
设N(1,m)则利用点到直线距离=NA,可求得m