证明:
1/a+1/b+1/c
=(2/a+2/b+2/c )/2
=[(a+b+c)/a+(a+b+c)/b+(a+b+c)/c ]/2
=[1+(b+c)/a+1+(a+c)/b+1(a+b)/c ]/2
=[3+b/c+c/b+a/c+c/a+a/b+b/a]/2
∵b/a+a/b≥2,c/a+a/c≥2,c/b+b/c≥2
∴[3+(b/c+c/b)+(a/c+c/a)+(a/b+b/a)]/2 ≥(3+2+2+2 )/2=9/2
∴1/a+1/b+1/c≥9/2
当且仅当a=b=c时,取等号。