解分式方程 (3x⼀x-1)-2[1+(1⼀x-1)}^2=(x⼀x+1)

2024-10-31 03:17:19
推荐回答(1个)
回答(1):

3x/(x-1)-2[1+1/(x-1)]^2=x/(x+1)
3x/(x-1)-2x^2/(x-1)^2-x/(x+1)=0
[3x(x-1)(x+1)-2x^2*(x+1)-x*(x-1)^2]/[(x+1)(x-1)^2]=0
[x(3x^2-3-2x^2-2x-x^2+2x-1)]/[(x+1)(x-1)^2]=0
-4x/[(x+1)(x-1)^2]=0
-4x=0
x=0