3-1=2
6-3=3
10-6=4
……
……
a(n-1)-a(n-2)=n-1
an-a(n-1)=n
上面所以有式子相加得
(3+6+10+……+a(n-1)+an)-(1+3+6+……+a(n-1))=2+3+4+……+(n-1)+n
(an)-1=(2+n)(n-1)/2
an=(n²+n)/2
Sn=a1+a2+a3+……+an
=(1/2)[(1+2+3+……+n)+(1^2+2^2+3^2+……+n^2)]
=(1/2)[(1+n)n/2+n(n+1)(2n+1)/6]
=(1/2)[(1+n)n/2](1+(2n+1)/3)
=(1/4)n(n+1)(2n+4)/3
=(1/6)n(n+1)(n+2)
下面证明公式:
1²+2²+3²+……+(n-1)²+n²=1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
证明:
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6
原式=1+(1+2)+(1+2+3)+……+(1+2+3+……+n)
1+2+3+……+n=n(n+1)/2=n/2+n^2/2
所以原式=(1+2+3+……+n)/2+(1^2+2^2+3^2+……+n^2)/2
1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6
所以原式=[n(n+1)/2]/2+[n(n+1)(2n+1)/6]/2
=n(n+1)(n+2)/6
第n项的通项是1+2+..+n=n(n+1)/2
s=1+2*3/2+.....+n^2/2+n/2
=1/2(1+..+n^2)+(1/2)(1+..+n)
=1/2*n(n+1)(2n+1)/6 +1/2*n(n+1)/2
=1/2*n(n+1)/2(1+(2n+1)/3)
=n(n+1)(n+2)/6
最后一个n是不对的,通项公式an=(n^2+n)/2
Sn=n(n+1)(n+2)/6
n(n+1)(n+2)/6