电池里为什么会有电

2024-11-19 00:44:51
推荐回答(5个)
回答(1):

是因为在电池里面有化学物质,当它们发生化学变化时,就使化学能变成了电能。因为化学能会用完,所以电池所产生的电能是有限的。要注意:电池里的化学物质对身体有害,所以,千万不要把它拆开来玩,而且不要随便丢弃废电池,以免污染环境。

在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。

扩展资料:

电池分类

1、化学电池

化学电池,是指通过电化学反应,把正极、负极活性物质的化学能,转化为电能的一类装置。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的品种。

无时无刻不在为我们的美好生活服务。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。现代社会的人们,每天的日常生活中,越来越离不开化学电池了。

2、干电池和液体电池

干电池和液体电池的区分仅限于早期电池发展的那段时期。最早的电池由装满电解液的玻璃容器和两个电极组成。后来推出了以糊状电解液为基础的电池,也称做干电池。

参考资料来源:百度百科--电池

回答(2):

电池是一种能量转化与储存的装置。它通过反应将化学能或物理能转化为电能。电池即一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供能。作为一种电的贮存装置,当两种金属(通常是性质有差异的金属)浸没于电解液之中,它们可以导电,并在“极板”之间产生一定电动势。电动势大小(或电压)与所使用的金属有关,不同种类的电池其电动势也不同。
电池的性能参数主要有电动势、容量、比能量和电阻。电动势等于单位正电荷由负极通过电池内部移到正极时,电池非静电力(化学力)所做的功。电动势取决于电极材料的化学性质,与电池的大小无关。电池所能输出的总电荷量为电池的容量,通常用安培小时作单位。在电池反应中,1千克反应物质所产生的电能称为电池的理论比能量。电池的实际比能量要比理论比能量小。因为电池中的反应物并不全按电池反应进行,同时电池内阻也要引起电动势降,因此常把比能量高的电池称做高能电池。电池的面积越大,其内阻越小。
电池的能量储存有限,电池所能输出的总电荷量叫做它的容量,通常用安培小时作单位,它也是电池的一个性能参数。电池的容量与电极物质的数量有关,即与电极的体积有关。
实用的化学电池可以分成两个基本类型:原电池与蓄电池。原电池制成后即可以产生电流,但在放电完毕即被废弃。蓄电池又称为二次电池,使用前须先进行充电,充电后可放电使用,放电完毕后还可以充电再用。蓄电池充电时,电能转换成化学能;放电时,化学能转化为电能。

电池的原理

在化学电池中,化学能直接转变为电能是靠电池内部自发进行氧化、还原等化学反应的结果,这种反应分别在两个电极上进行。负极活性物质由电位较负并在电解质中稳定的还原剂组成,如锌、镉、铅等活泼金属和氢或碳氢化合物等。正极活性物质由电位较正并在电解质中稳定的氧化剂组成,如二氧化锰、二氧化铅、氧化镍等金属氧化物,氧或空气,卤素及其盐类,含氧酸及其盐类等。电解质则是具有良好离子导电性的材料,如酸、碱、盐的水溶液,有机或无机非水溶液、熔融盐或固体电解质等。当外电路断开时,两极之间虽然有电位差(开路电压),但没有电流,存储在电池中的化学能并不转换为电能。当外电路闭合时,在两电极电位差的作用下即有电流流过外电路。同时在电池内部,由于电解质中不存在自由电子,电荷的传递必然伴随两极活性物质与电解质界面的氧化或还原反应,以及反应物和反应产物的物质迁移。电荷在电解质中的传递也要由离子的迁移来完成。因此,电池内部正常的电荷传递和物质传递过程是保证正常输出电能的必要条件。充电时,电池内部的传电和传质过程的方向恰与放电相反;电极反应必须是可逆的,才能保证反方向传质与传电过程的正常进行。因此,电极反应可逆是构成蓄电池的必要条件。为吉布斯反应自由能增量(焦);F为法拉第常数=96500库=26.8安·小时;n为电池反应的当量数。这是电池电动势与电池反应之间的基本热力学关系式,也是计算电池能量转换效率的基本热力学方程式。实际上,当电流流过电极时,电极电势都要偏离热力学平衡的电极电势,这种现象称为极化。电流密度(单位电极面积上通过的电流)越大,极化越严重。极化现象是造成电池能量损失的重要原因之一。极化的原因有三:①由电池中各部分电阻造成的极化称为欧姆极化;②由电极-电解质界面层中电荷传递过程的阻滞造成的极化称为活化极化;③由电极-电解质界面层中传质过程迟缓而造成的极化称为浓差极化。减小极化的方法是增大电极反应面积、减小电流密度、提高反应温度以及改善电极表面的催化活性。

电池主要性能参数

电池的主要性能包括额定容量、额定电压、充放电速率、阻抗、寿命和自放电率。

额定容量

在设计规定的条件(如温度、放电率、终止电压等)下,电池应能放出的最低容量,单位为安培小时,以符号C表示。容量受放电率的影响较大,所以常在字母C的右下角以阿拉伯数字标明放电率,如C20=50,表明在20时率下的容量为50安·小时。电池的理论容量可根据电池反应式中电极活性物质的用量和按法拉第定律计算的活性物质的电化学当量精确求出。由于电池中可能发生的副反应以及设计时的特殊需要,电池的实际容量往往低于理论容量。

额定电压

电池在常温下的典型工作电压,又称标称电压。它是选用不同种类电池时的参考。电池的实际工作电压随不同使用条件而异。电池的开路电压等于正、负电极的平衡电极电势之差。它只与电极活性物质的种类有关,而与活性物质的数量无关。电池电压本质上是直流电压,但在某些特殊条件下,电极反应所引起的金属晶体或某些成相膜的相变会造成电压的微小波动,这种现象称为噪声。波动的幅度很小但频率范围很宽,故可与电路中自激噪声相区别。

充放电速率

有时率和倍率两种表示法。时率是以充放电时间表示的充放电速率,数值上等于电池的额定容量(安·小时)除以规定的充放电电流(安)所得的小时数。倍率是充放电速率的另一种表示法,其数值为时率的倒数。原电池的放电速率是以经某一固定电阻放电到终止电压的时间来表示。放电速率对电池性能的影响较大。

阻抗

电池内具有很大的电极-电解质界面面积,故可将电池等效为一大电容与小电阻、电感的串联回路。但实际情况复杂得多,尤其是电池的阻抗随时间和直流电平而变化,所测得的阻抗只对具体的测量状态有效。

寿命

储存寿命指从电池制成到开始使用之间允许存放的最长时间,以年为单位。包括储存期和使用期在内的总期限称电池的有效期。储存电池的寿命有干储存寿命和湿储存寿命之分。循环寿命是蓄电池在满足规定条件下所能达到的最大充放电循环次数。在规定循环寿命时必须同时规定充放电循环试验的制度,包括充放电速率、放电深度和环境温度范围等。

自放电率

电池在存放过程中电容量自行损失的速率。用单位储存时间内自放电损失的容量占储存前容量的百分数表示。

化学电池

化学电池,是指通过电化学反应,把正极、负极活性物质的化学能,转化为电能的一类装置。经过长期的研究、发展,化学电池迎来了品种繁多,应用广泛的局面。大到一座建筑方能容纳得下的巨大装置,小到以毫米计的品种。无时无刻不在为我们的美好生活服务。现代电子技术的发展,对化学电池提出了很高的要求。每一次化学电池技术的突破,都带来了电子设备革命性的发展。现代社会的人们,每天的日常生活中,越来越离不开化学电池了。现在世界上很多电化学科学家,把兴趣集中在做为电动汽车动力的化学电池领域。

干电池和液体电池

干电池和液体电池的区分仅限于早期电池发展的那段时期。最早的电池由装满电解液的玻璃容器和两个电极组成。后来推出了以糊状电解液为基础的电池,也称做干电池。
现在仍然有“液体”电池。一般是体积非常庞大的品种。如那些做为不间断电源的大型固定型铅酸蓄电池或与太阳能电池配套使用的铅酸蓄电池。对于移动设备,有些使用的是全密封,免维护的铅酸蓄电池,这类电池已经成功使用了许多年,其中的电解液硫酸是由硅凝胶固定或被玻璃纤维隔板吸付的。

一次性电池和可充电电池

一次性电池俗称“用完即弃”电池,因为它们的电量耗尽后,无法再充电使用,只能丢弃。常见的一次性电池包括碱锰电池、锌锰电池、锂电池、锌电池、锌空电池、锌汞电池、水银电池、氢氧电池和镁锰电池。
可充电电池按制作材料和工艺上的不同,常见的有铅酸电池、镍镉电池、镍铁电池、镍氢电池、锂离子电池。其优点是循环寿命长,它们可全充放电200多次,有些可充电电池的负荷力要比大部分一次性电池高。普通镍镉、镍氢电池使用中,特有的记忆效应,造成使用上的不便,常常引起提前失效。

电池的理论充电时间

电池的理论充电时间:电池的电量除以充电器的输出电流。
例如:以一块电量为800MAH的电池为例,充电器的输出电流为500MA那么充电时间就等于800MAH/500MA=1.6小时,当充电器显示充电完成后,最好还要给电池大约半个小时左右的补电时间。

燃料电池

燃料电池是一种将燃料的化学能透过电化学反应直接转化成电能的装置燃料电池是利用氢气在阳极进行的是氧化反应,将氢气氧化成氢离子,而氧气在阴极进行还原反应,与由阳极传来的氢离子结合生成水。氧化还原反应过程中就可以产生电流。燃料电池的技术包括了出现碱性燃料电池(AFC)、磷酸燃料电池(PAFC)、质子交换膜燃料电池(PEMFC)、熔融碳酸盐燃料电池(MCFC)、固态氧化物燃料电池(SOFC),以及直接甲醇燃料电池(DMFC)等,而其中,利用甲醇氧化反应作为正极反应的燃料电池技术,更是被业界所看好而积极发展。

电池的安全性测试项目

内部短路测试
持续充电测试
过充电
大电流充电
强迫放电
坠落测试
从高处坠落测试
穿透实验
平面压碎实验
切割实验
低气压内搁置测试
热虐实验
浸水实验
灼烧实验
高压实验
烘烤实验
电子炉实

电池分类

电池的种类很多,常用电池主要是干电池、蓄电池,以及体积小的微型电池。此外,还有金属-空气电池、燃料电池以及其他能量转换电池如太阳电池、温差电池、核电池等。
干电池
常用的一种是碳-锌干电池(图3)。负极是锌做的圆筒,内有氯化铵作为电解质,少量氯化锌、惰性填料及水调成的糊状电解质,正极是四周裹以掺有二氧化锰的糊状电解质的一根碳棒。电极反应是:负极处锌原子成为锌离子(Zn++),释出电子,正极处铵离子(NH嬃)得到电子而成为氨气与氢气。用二氧化锰驱除氢气以消除极化。电动势约为1.5伏。
蓄电池
种类很多,共同的特点是可以经历多次充电、放电循环,反复使用。
铅蓄电池
最为常用,其极板是用铅合金制成的格栅,电解液为稀硫酸。两极板均覆盖有硫酸铅。但充电后,正极处极板上硫酸铅转变成二氧化铅,负极处硫酸铅转变成金属铅。放电时,则发生反方向的化学反应。
铅蓄电池的电动势约为2伏,常用串联方式组成6伏或12伏的蓄电池组。电池放电时硫酸浓度减小,可用测电解液比重的方法来判断蓄电池是否需要充电或者充电过程是否可以结束。
铅蓄电池的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。
由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质——氢氧化铅〔Pb(OH4〕)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO2)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。
随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。
铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。采用新型铅合金,可改进铅蓄电池的性能。如用铅钙合金作板栅,能保证铅蓄电池最小的浮充电流、减少添水量和延长其使用寿命;采用铅锂合金铸造正板栅,则可减少自放电和满足密封的需要。此外,开口式铅蓄电池要逐步改为密封式,并发展防酸、防爆式和消氢式铅蓄电池。

铁镍蓄电池

也叫爱迪生电池。铅蓄电池是一种酸性蓄电池,与之不同,铁镍蓄电池的电解液是碱性的氢氧化钾溶液,是一种碱性蓄电池。其正极为氧化镍,负极为铁。充电、放电的化学反应是
电动势约为1.3~1.4伏。其优点是轻便、寿命长、易保养,缺点是效率不高。

镍镉蓄电池

正极为氢氧化镍,负极为镉,电解液是氢氧化钾溶液,充电、放电的化学反应是
其优点是轻便、抗震、寿命长,常用于小型电子设备。

银锌蓄电池

正极为氧化银,负极为锌,电解液为氢氧化钾溶液。
银锌蓄电池的比能量大,能大电流放电,耐震,用作宇宙航行、人造卫星、火箭等的电源。充、放电次数可达约100~150次循环。其缺点是价格昂贵,使用寿命较短。

燃料电池

一种把燃料在燃烧过程中释放的化学能直接转换成电能的装置。与蓄电池不同之处,是它可以从外部分别向两个电极区域连续地补充燃料和氧化剂而不需要充电。燃料电池由燃料(例如氢、甲烷等)、氧化剂(例如氧和空气等)、电极和电解液等四部分构成。其电极具有催化性能,且是多孔结构的,以保证较大的活性面积。工作时将燃料通入负极,氧化剂通入正极,它们各自在电极的催化下进行电化学反应以获得电能。
燃料电池把燃烧反应所放出的能量直接转变为电能,所以它的能量利用率高,约等于热机效率的2倍以上。此外它还有下述优点:①设备轻巧;②不发噪音,很少污染;③可连续运行;④单位重量输出电能高等。因此,它已在宇宙航行中得到应用,在军用与民用的各个领域中已展现广泛应用的前景。

太阳电池

把太阳光的能量转换为电能的装置。当日光照射时,产生端电压,得到电流,用于人造卫星、宇宙飞船中的太阳电池是半导体制成的(常用硅光电池)。日光照射太阳电池表面时,半导体PN结的两侧形成电位差。其效率在百分之十以上,典型的输出功率是5~10毫瓦每平方厘米(结面积)。

温差电池

两种金属接成闭合电路,并在两接头处保持不同温度时,产生电动势,即温差电动势,这叫做塞贝克效应(见温差电现象),这种装置叫做温差电偶或热电偶。金属温差电偶产生的温差电动势较小,常用来测量温度差。但将温差电偶串联成温差电堆时,也可作为小功率的电源,这叫做温差电池。用半导体材料制成的温差电池,温差电效应较强。

核电池

把核能直接转换成电能的装置(目前的核发电装置是利用核裂变能量使蒸汽受热以推动发电机发电,还不能将核裂变过程中释放的核能直接转换成电能)。通常的核电池包括辐射β射线(高速电子流)的放射性源(例如锶-90),收集这些电子的集电器,以及电子由放射性源到集电器所通过的绝缘体三部分。放射性源一端因失去负电成为正极,集电器一端得到负电成为负极。在放射性源与集电器两端的电极之间形成电位差。这种核电池可产生高电压,但电流很小。它用于人造卫星及探测飞船中,可长期使用。

原电池

经一次放电(连续或间歇)到电池容量耗尽后,不能再有效地用充电方法使其恢复到放电前状态的电池。特点是携带方便、不需维护、可长期(几个月甚至几年)储存或使用。原电池主要有锌锰电池、锌汞电池、锌空气电池、固体电解质电池和锂电池等。锌锰电池又分为干电池和碱性电池两种。

锌锰干电池

制造最早而至今仍大量生产的原电池。有圆柱型和叠层型两种结构。其特点是使用方便、价格低廉、原材料来源丰富、适合大量自动化生产。但放电电压不够平稳,容量受放电率影响较大。适于中小放电率和间歇放电使用。新型锌锰干电池采用高浓度氯化锌电解液、优良的二氧化锰粉和纸板浆层结构,使容量和寿命均提高一倍,并改善了密封性能。

碱性锌锰电池

以碱性电解质代替中性电解质的锌锰电池。有圆柱型和钮扣型两种。这种电池的优点是容量大,电压平稳,能大电流连续放电,可在低温(-40℃)下工作。这种电池可在规定条件下充放电数十次。

锌汞电池

由美国S.罗宾发明,故又名罗宾电池。是最早发明的小型电池。有钮扣型和圆柱型两种。放电电压平稳,可用作要求不太严格的电压标准。缺点是低温性能差(只能在0℃以上使用),并且汞有毒。锌汞电池已逐渐被其他系列的电池代替。

锌空气电池

以空气中的氧为正极活性物质,因此比容量大。有碱性和中性两种系列,结构上又有湿式和干式两种。湿式电池只有碱性一种,用NaOH为电解液,价格低廉,多制成大容量(100安·小时以上)固定型电池供铁路信号用。干式电池则有碱性和中性两种。中性空气干电池原料丰富、价格低廉,但只能在小电流下工作。碱性空气干电池可大电流放电,比能量大,连续放电比间歇放电性能好。所有的空气干电池都受环境湿度影响,使用期短,可靠性差,不能在密封状态下使用。

固体电解质电池

以固体离子导体为电解质,分高温、常温两类。高温的有钠硫电池,可大电流工作。常温的有银碘电池,电压0.6伏,价格昂贵,尚未获得应用。已使用的是锂碘电池,电压2.7伏。这种电池可靠性很高,可用于心脏起搏器。但这种电池放电电流只能达到微安级。

锂电池

以锂为负极的电池。它是60年代以后发展起来的新型高能量电池。按所用电解质不同分为:①高温熔融盐锂电池;②有机电解质锂电池;③无机非水电解质锂电池;④固体电解质锂电池;⑤锂水电池。锂电池的优点是单体电池电压高,比能量大,储存寿命长(可达10年),高低温性能好,可在-40~150℃使用。缺点是价格昂贵,另外电压滞后和安全问题尚待改善。

储备电池

有两种激活方式,一种是将电解液和电极分开存放,使用前将电解液注入电池组而激活,如镁海水电池、储备式铬酸电池和锌银电池等。另一种是用熔融盐电解质,常温时电解质不导电,使用前点燃加热剂将电解质迅速熔化而激活,称为热电池。这种电池可用钙、镁或锂合金为负极,KCl和LiCl的低共熔体为电解质,CaCrO4、PbSO4或V2O5等为正极,以锆粉或铁粉为加热剂。采用全密封结构可长期储存(10年以上)。储备电池适于特殊用途。

标准电池

最著名的是惠斯顿标准电池,分饱和型和非饱和型两种。其标准电动势为1.01864伏(20℃)。非饱和型的电压温度系数约为饱和型的1/4。

糊式锌-锰干电池

由锌筒、电糊层、二氧化锰正极、炭棒、铜帽等组成。最外面的一层是锌筒,它既是电池的负极又兼作容器,在放电过程中它要被逐渐溶解;中央是一根起集流作用的碳棒;紧紧环绕着这根碳棒的是一种由深褐色的或黑色的二氧化锰粉与一种导电材料(石墨或乙炔黑)所构成的混合物,它与碳棒一起构成了电池的正极体,也叫炭包。为避免水分的蒸发,干电池的上部用石蜡或沥青密封。锌-锰干电池工作时的电极反应为锌极:Zn→Zn2++2e

纸板式锌-锰干电池

在糊式锌-锰干电池的基础上改进而成。它以厚度为70~100微米的不含金属杂质的优质牛皮纸为基,用调好的糊状物涂敷其表面,再经过烘干制成纸板,以代替糊式锌-锰干电池中的糊状电解质层。纸板式锌-锰干电池的实际放电容量比普通的糊式锌-锰干电池要高出2~3倍。标有“高性能”字样的干电池绝大部分为纸板式。

碱性锌-锰干电池

其电解质由汞齐化的锌粉、35%的氢氧化钾溶液再加上一些钠羧甲基纤维素经糊化而成。由于氢氧化钾溶液的凝固点较低、内阻小,因此碱性锌-锰干电池能在-20℃温度下工作,并能大电流放电。碱性锌-锰干电池可充放电循环40多次,但充电前不能进行深度放电(保留60%~70%的容量),并需严格控制充电电流和充电期终的电压。

叠层式锌-锰干电池

由几个结构紧凑的扁平形单体电池叠在一起构成。每一个单体电池均由塑料外壳、锌皮、导电膜以及隔膜纸、炭饼(正极)组成。隔膜纸是一种吸有电解液的表面有淀粉层的浆层纸,它贴在锌皮的上面;隔膜纸上面是炭饼。隔膜纸如同糊式干电池的电糊层,起隔离锌皮负极和炭饼正极的作用。叠层式锌-锰干电池减去了圆筒形糊式干电池串联组合的麻烦,其结构紧凑、体积小、体积比容量大,但贮存寿命短且内阻较大,因而放电电流不宜过大。

碱性蓄电池

与同容量的铅蓄电池相比,其体积小,寿命长,能大电流放电,但成本较高。碱性蓄电池按极板活性材料分为铁镍、镉镍、锌银蓄电池等系列。以镉镍蓄电池为例,碱性蓄电池的工作原理是:蓄电池极板的活性物质在充电后,正极板为氢氧化镍〔Ni(OH)3〕,负极板为金属镉(Cd);而放电终止时,正极板转变为氢氧化亚镍〔Ni(OH2)〕,负极板转变为氢氧化镉〔Cd(OH)2〕,电解液多选用氢氧化钾(KOH)溶液。

金属-空气电池

以空气中的氧气作为正极活性物质,金属作为负极活性物质的一种高能电池。使用的金属一般是镁、铝、锌、镉、铁等;电解质为水溶液。其中锌�空气电池已成为成熟的产品。

金属-空气电池具有较高的比能量,这是因为空气不计算在电池的重量之内。锌�空气电池的比能量是现生产的电池中最高的,已达400瓦·小时/千克(Wh/kg),是一种高性能中功率电池,并正向高功率电池的方向发展。目前生产的金属-空气电池主要是一次电池;研制中的二次金属-空气电池为采用更换金属电极的机械再充电电池。由于金属-空气电池工作时要不断地供应空气,因此它不能在密封状态或缺少空气的环境中工作。此外,电池中的电解质溶液易受空气湿度的影响而使电池性能下降;空气中的氧会透过空气电极并扩散到金属电极上,形成腐蚀电池引起自放电。

电池的型号

一般分为:1、2、3、5、7号,其中5号和7号尤为常用,所谓的AA电池就是5号电池,而AAA电池就是7号电池!AA、AAA都是说明电池型号的。
例如:
AA就是我们通常所说的5号电池,一般尺寸为:直径14mm,高度49mm;
AAA就是我们通常所说的7号电池,一般尺寸为:直径11mm,高度44mm。

其他型号

说说常见的“AAAA,AAA,AA,A,SC,C,D,N,F”这些型号
AAAA型号少见,一次性的AAAA劲量碱性电池偶尔还能见到,一般是电脑笔里面用的。标准的AAAA(平头)电池高度41.5±0.5mm,直径8.1±0.2mm。
AAA型号电池就比较常见,一般的MP3用的都是AAA电池,标准的AAA(平头)电池高度43.6±0.5mm,直径10.1±0.2mm。
AA型号电池就更是人尽皆知,数码相机,电动玩具都少不了AA电池,标准的AA(平头)电池高度48.0±0.5mm,直径14.1±0.2mm。
只有一个A表示型号的电池不常见,这一系列通常作电池组里面的电池芯,我经常给别人换老摄像机的镍镉,镍氢电池,几乎都是4/5A,或者4/5SC的电池芯。标准的A(平头)电池高度49.0±0.5mm,直径16.8±0.2mm。
SC型号也不常见,一般是电池组里面的电池芯,多在电动工具和摄像机以及进口设备上能见到,标准的SC(平头)电池高度42.0±0.5mm,直径22.1±0.2mm。
C型号也就是二号电池,用途不少,标准的C(平头)电池高度49.5±0.5mm,直径25.3±0.2mm。
D型号就是一号电池,用途广泛,民用,军工,特异型直流电源都能找到D型电池,标准的D(平头)电池高度59.0±0.5mm,直径32.3±0.2mm。
N型号不常见,我还不知道啥东西里面用,标准的N(平头)电池高度28.5±0.5mm,直径11.7±0.2mm。
F型号电池,现在是电动助力车,动力电池的新一代产品,大有取代铅酸免维护蓄电池的趋势,一般都是作电池芯(个人见解:其实个太大,不好单独使用,呵呵)。标准的N(平头)电池高度89.0±0.5mm,直径32.3±0.2mm。
大家注意到,(平头)字样,指的是电池正极是平的,没有突起,使用做电池组点焊使用的电池芯,一般同等型号尖头的(可以用作单体电池供电的),在高度上就多了0.5mm。以此类推,我不逐一解释。还有,电池很多的时候并不是规规矩矩的“AAA,AA,A,SC,C,D,N,F”这些主型号,前面还时常有分数“1/3,2/3,1/2,2/3,4/5,5/4,7/5”,这些分数表示的是池体相应的高度,例如“2/3AA”就是表示高是一般AA电池的2/3的充电电池;再如“4/5A”就是表示高是一般A电池的4/5的充电电池。
还有一种型号表示方法,是五位数字,例如,14500,17490,26500,前两位数字是指池体直径,后三位数字是指池体高,例如14500就是指AA电池,即大约14mm直径,50mm高

回答(3):

电池基本原理

什么叫电池?
电池是一种能量转化与储存的装置,它主要通过化学反应将化学能或物理能转化为电能。电池是一种化学电源,它由两种不同成分的电化学活性电极分别组成正负极,两电极浸泡在能提供媒体传导作用的电解质中,当连接在某一外部载体上时,通过转换其内部的化学能来提供电能。

一次电池与二次电池的有哪些异同点?
一次电池只能放电一次,二次电池(也叫可充电电池)可反复充放电循环使用,可充电电池在放电时电极体积和结构之间发生可逆变化,因此设计时必须调节这些变化,而一次电池内部则简单得多,因为它不需要调节这些可逆性变化,一次电池的质量比容量和体积比容量均大于一般充电电池,但内阻远比二次电池大,因此负载能力较低,另外,一次电池的自放电远小于二次电池。

什么是IEC标准?
IEC标准即国际电工委员会(International Electrical Commission),是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化。其中关于镍镉电池的标准为 IEC60285,关于镍氢电池的标准是IEC61436,锂离子电池的标准是IEC61960,一般电池行业依据的是SANYO或Panasonic公司的标准。

电池常用标准有哪些?
电池常用IEC标准有:
镍镉电池的标准为IEC602851999;
镍氢电池的标准为IEC614361998.1;
锂电池的标准为 IEC619602000.11。
电池常用国家标准有:
镍镉电池的标准为GB/T 11013_1996,GB/T 18289_2000;
镍氢电池的标准为GB/T 15100_1994,GB/T 18288_2000;
锂电池的标准为 GB/T 10077_1998,YD/T 998_1999,
GB/T 18287_2000。
另外电池常用标准也有日本工业标准JIS C 关于电池的标准
及SANYO和PANASONIC公司制定的关于电池企业标准。

镍镉电池的电化学原理是什么?
镍镉电池采用Ni(OH)2作为正极,CdO作为负极,碱液(主要为KOH)作为电解液,镍镉电池充电时,正极发生如下反应
Ni(OH)2 –e + OH- → NiOOH + H2O
负极发生的反应:
Cd(OH)2 + 2e → Cd + 2OH-
总反应为:2Ni(OH)2 + Cd(OH)2→ 2NiOOH+ Cd+ 2H2O
放电时,反应逆向进行NiOOH + H2O + e→ Ni(OH)2 + OH-
Cd + 2OH- + 2e→ Cd(OH)2
充电时,随着NiOOH浓度的增大,Ni(OH)2浓度的减小,正极的电势逐渐上升,而随着Cd的增多,Cd(OH)2的减小,负极的电势逐渐降低,当电池充满电时,正极、负极电位均达到一个平衡值,二者电势之差即为电池之充电电压。

镍氢电池的电化学原理是什么?
镍氢电池采用与镍镉电池相同的Ni氧化物作为正极,储氢金属作为负极,碱液(主要为KOH)作为电解液,镍氢电池充电时,正极发生反应如下:
Ni(OH)2 –e + OH- → NiOOH + H2O
负极反应:MHn + ne → M + n/2H2
放电时,正极:NiOOH + H2O + e → Ni(OH)2 + OH-
负极:M + n/2H2 → MHn + ne 。

锂离子电池的电化学原理是什么?
锂离子电池正极主要成分为LiCoO2负极主要为C,充电时
正极反应:LiCoO2 -> Li1-xCoO2 + xLi+ + xe-
负极反应:C + xLi+ + xe- -> CLix
电池总反应:LiCoO2 + C -> Li1-xCoO2 + CLix
放电时发生上述反应的逆反应。

电池的主要结构组成是什么?
电池的主要组成部分为:正极片、负极片、隔膜纸、盖帽、外壳、绝缘层。

手机锂电池由哪些部分组成及各部分的功能是什么?
手机锂电池主要由塑胶壳上下盖、.锂电芯、保护线路板(PCB)和可恢复保险丝(polyswitch)组成。有的厂家还配置了NTC、识别电阻、震动马达或充电电路等元件。
各部分功能如下:
(1) 锂电芯:提供可充放电源。
(2) 保护线路板(PCB):防止电池过充过放短路。
(3) 可恢复保险丝(PTC): 正热敏电阻起到高温保护作用同时又是保护线路板失效后的二重保护。
(4) 可恢复保险丝(NTC): 负热敏电阻,感应电池内部温度起到低温保护作用。
(5) 识别电阻:识别原装电池非原装电池不能使用。

电池的包装材料有哪些?
(1) 不干介子纸(如纤维纸双面胶)
(2) PVC膜商标管
(3) 连接片(不锈钢片、纯镍片、镀镍钢片 )
(4) 引出片(不锈钢片---易于焊锡、纯镍片---点焊牢)
(5) 插头类
(6) 保护元器件类(如温控开关过流保护器限流电阻)
(7) 纸箱纸盒
(8) 塑料壳类

电池包装组合及设计的目的是什么?
(1) 美观品牌印字商标的设计
(2) 电池电压的限制(要获得较高电压需串联多只电池)
(3) 保护电池,防止短路,延长电池使用寿命
(4) 尺寸的限制
(5) 便于运输(如纸箱.纸盒的设计等)
(6) 特殊功能的设计(如防水、特殊外型设计等)

电池使用时有哪些注意事项?
(1) 仔细阅读电池说明书,使用所推荐的电池
(2) 检查电器及电池的接触件是否清洁,必要时用湿布擦干净,干燥后按正确极性方向装入
(3) 无成人监护时,不要让儿童更换电池,小型电池如AAA应放在儿童不能拿到的地方
(4) 不要将新、旧电池或不同型号电池混用
(5) 不要试图用加热,充电或其它方法使一次电池再生
(6) 不要将电池短路
(7) 不要加热电池或将电池丢入水中
(8) 不要拆卸电池
(9) 用电器使用后应断开开关
(10) 应当从长期不使用的用电器具中取出电池
(11) 电池应保存在阴凉,干燥无阳光直射处

电池对环境有什么影响?
现今几乎所有电池均不含汞,但重金属仍然是汞电池,可充电镍镉电池,铅酸电池的必要组成部分。如果处置不当,且数量较多的话,这些重金属将对环境产生有害的影响。目前,国际上已有专门机构回收氧化锰镍镉和铅酸电池。例如非盈利机构RBRC公司http://www.rbrc.com 。
海太阳一直致力于生产环保电池(镍氢,锂离子)来代替镍镉电池。

环境温度对电池性能有何影响?
在所有的环境因素中,温度对电池的充放电性能影响最大,在电极/电解液界面上的电化学反应与环境温度有关,电极/电解液界面被视为电池的心脏。如果温度下降,电极的反应率也下降,假设电池电压保持恒定,放电电流降低,电池的功率输出也会下降。如果温度上升则相反,即电池输出功率会上升,温度也影响电解液的传送速度温度上升则加快,传送温度下降,传送减慢,电池充放电性能也会受到影响。但温度太高,超过45℃,会破坏电池内的化学平衡,导致副反应。
镍镉镍氢电池的放电效率在低温会有显著的降低(如低于-15℃),而在-20℃时,碱液达到起凝固点,电池充电速度也将大大降低。在低温充电低于0℃会增大电池内压并可能使安全阀开启。为了有效充电,环境温度范围应在5-30℃之间,一般充电效率会随温度的升高而升高,但当温度升到45℃以上,高温下充电电池材料的性能会退化,电池的循环寿命也将大大缩短。

充电的控制方法有哪些?
为了防止电池过充,需要对充电终点进行控制,当电池充满时,会有一些特别的信息可利用来判断充电是否达到终点。一般有以下六种方法来防止电池被过充:
(1) 峰值电压控制:通过检测电池的峰值电压来判断充电的终点
(2) dT/dt控制:通过检测电池峰值温度变化率来判断充电的终点
(3) T控制:电池充满电时温度与环境温度之差会达到最大
(4) -V控制:当电池充满电达到一峰值电压后,电压会下降一定的值
(5) 计时控制:通过设置一定的充电时间来控制充电终点,一般设定要充进130%标称容量所需的时间来控制
(6) TCO控制:考虑电池的安全和特性应当避免高温(高温电池除外)充电,因此当电池温度升高60℃时应当停止充电。

什么是过充电对电池性能有何影响?
过充电是指电池经一定充电过程充满电后,再继续充电的行为,对Ni-Cd电池,过充电产生如下反应:
正极:4OH- - 4e → 2H2O + O2↑
负极:2Cd + O2 → 2CdO
由于在设计时,负极容量比正极容量要高,因此,正极产生的氧气透过隔膜纸与负极产生的镉复合。故一般情况下,电池的内压不会有明显升高,但如果充电电流过大,或充电时间过长,产生的氧气来不及被消耗,就可能造成内压升高,电池变形,漏液等不良现象。同时,其电性能也会显著降低。

什么是过放电对电池性能有何影响?
电池放完内部储存的电量,电压达到一定值后,继续放电就会造成过放电,通常根据放电电流来确定放电截止电压。0.2C-2C放电一般设定 1.0V/支,3C以上如5C或10C放电设定为0.8V/支,电池过放可能会给电池带来灾难性的后果,特别是大电流过放,或反复过放对电池影响更大。一般而言,过放电会使电池内压升高,正负极活性物质可逆性受到破坏,即使充电也只能部分恢复,容量也会有明显衰减。

电池电池组放电时间短的可能原因有哪些?
(1) 电池未被充满电,如充电时间不够,充电效率较低等
(2) 放电电流过大,致使放电效率降低从而使放电时间缩短
(3) 电池放电时环境温度过低,放电效率下降

电池使用寿命短的可能原因是什么?
(1) 充电器或充电电路与电池类型不匹配
(2) 过充,过放
(3) 电池类型与用电器要求不一致

不同容量的电池组合在一起使用会出现什么问题?
如果将不同容量或新旧电池混在一起使用,有可能出现漏液,零电压等现象。这是由于充电过程中,容量差异导致充电时有些电池被过充,有些电池未充满电,放电时有容量高的电池未放完电,而容量低的则被过放。如此恶性循环,电池受到损害而漏液或低(零)电压。

电池使用完后或长期不使用是否可以保存在用电器内?
如果用电器较长时期内不再使用,最好将电池取出并放于低温,干燥的地方,如果不这样,即使用电器被关掉,系统仍会使电池有一个低电流输出,这会缩短电池的使用寿命。

每次使用完后无绳电话都应放回机座吗?
按照惯例及无绳电话的设计,每次使用后都应放回机座上。这样可以激活电池,补充放掉的容量及有于自放电的容量损失。不过我们建议间或将电池完全放电,以便恢复电池的初始容量及放电性能。当然如果长期不使用电话,最好还是要将无绳电话取下来,避免电池长期被过充电。另外,由于无绳电话即使在关机后,系统仍有一小电流在放电,因此,长期不用时应拆下电池,使其置于开路,使用时再充电。

电池储存在什么样的条件较好?
根据IEC标准规定,电池应在温度为20±5℃,湿度为(65±20)%的条件下储存。一般而言,电池储存温度越高,容量的剩余率越低。反之,也是一样。冰箱温度在0℃-10℃时储存电池的最好地方。尤其是对一次电池,而二次电池即使储存后损失了容量,但只要重新充放电几次既可恢复。

电池能储存多久?
就理论上讲,电池储存时总有能量损失。电池本身固有的电化学结构决定了电池容量不可避免地要损失,主要是由于自放电造成的。通常自放电大小与正极材料在电解液中的溶解性和它受热后的不稳定性(易自我分解)有关。可充电电池的自放电远比一次电池高。而且电池类型不同,电池每月的自放电率也不一样。一般在10-35%变动。一次电池的自放电明显要低得多,在室温下每年不超过2%,储存过程中与自放电伴随的是电池内阻上升,这会造成电池负荷力的降低,而在放电电流较大的情况下,能量的损失变化非常明显,下表列出了正常储存条件下自放电的近似值:
类型 自放电
碱锰MnO2/Zn圆形电池 2%
锌碳MnO2/Zn圆形电池 〈4%
锂离子锂MnO2圆形电池和纽扣电池约 1%
镍镉/镍氢电池 〈35%

什么是短路?对电池性能有何影响?
电池外两端连接在任何导体上都会造成外部短路。
电池类型不同,短路有可能带来不同程度的后果。如:电解液温度升,内部气压升高,等气压值如果超过电池盖帽耐压值,电池将漏液。这种情况严重损坏电池。如果安全阀失效,甚至会引起爆炸。因此切勿将电池外部短路。

什么是记忆效应?怎样消除记忆效应?
记忆效应是针对镍镉电池而言的,由于传统工艺中负极为烧结式,镉晶粒较粗,如果镍镉电池在它们被完全放电之前就重新充电,镉晶粒容易聚集成块而使电池放电时形成次级放电平台。电池会储存这一放电平台并在下次循环中将其作为放电的终点,尽管电池本身的容量可以使电池放电到更低的平台上。在以后的放电过程中电池将只记得这一低容量。同样在每一次使用中,任何一次不完全的放电都将加深这一效应,使电池的容量变得更低。
要消除这种效应,有两种方法,一是采用小电流深度放电(如用0.1C放至0V);一是采用大电流充放电(如1C)几次。
电池出现零电压或低电压的可能原因是什么?
(1) 电池遭受外部短路,过充或反充(强制过放)
(2) 电池受高倍率大电流连续过充,导致电池极芯膨胀,正极直接接触短路
(3) 电池内部短路或微短路,如:正负极片有毛刺穿透隔膜纸接触短路,正负极片放置不当,造成极片接触短路,或正极片接触钢壳短路,负极掉料进隔膜纸,隔膜纸本身有缺陷,正极极耳接触负极片短路。

电池组零电压或低电压的可能原因有哪些?
(1) 是否单支电池零电压
(2) 插头短路,断路或与插头连接不好
(3) 引线与电池脱焊或虚焊
(4) 电池内部连接错误,连接片与电池之间漏焊,虚焊,脱焊等
(5) 电池内部电子组件连接不正确或损坏

电池电池组充不进电的可能原因是什么?
(1) 电池零电压或电池组中有零电压电池
(2) 电池组连接错误,内部电子组件,保护电路出现异常
(3) 充电设备故障,无输出电流
(4) 外部因素导致充电效率太低(如极低或极高温度)

电池电池组无法放电的可能原因是什么?
(1) 电池经储存,使用后,寿命衰减
(2) 充电不足或未充电
(3) 环境温度过低
(4) 放电效率较低(如大电流放电时普通电池由于内部物质扩散速度跟不上反应速度,造成电压急剧下降而无法放出电)。

电池充满电时温度为什么会急升?电压为什么会突降?
当镍镉电池充满电后再继续充电属于过充,由于正极Ni(OH)2已基本全部转化为NiOOH,电池电位在此一温度达到平衡值(最大值),此时外部的恒定电流过充使OH-氧化而产生氧气。
化学反应:4OH- - e →O2 + 2H2O + 热量
生产的氧气透过隔膜纸与负极产生的镉复合:
2Cd + O2 →2CdO + 热量
该化合反应产生的热量很多,只是电池整个体系温度升高。故此时温度存在急剧上升的现象。而由于温度越高,电池平衡电位越低,故温升必然导致电池平衡电位下降,故此时电池电压存在突降现象。

电池鼓底凸肚甚至漏液的可能原因时什么?
(1) 电池被过充,特别是高倍率大电流连续过充
(2) 电池被强制过放

什么是电池的爆炸怎样预防电池爆炸?
电池内的任何部分的固态物质瞬间排出,被推至离电池25cm以上的距离,称为爆炸。判别电池爆炸与否,采用下述条件实验。将一网罩住实验电池,电池居于正中,距网罩任何一边为25cm。网的密度为6-7根/cm,网线采用直径为0.25mm的软铝线,如果实验无固体部分通过网罩,证明该电池未发生爆炸。

回答(4):

因为它是电池~呵呵~
1 概述 化学电源

2 锌-锰干电池的工作原理

3 铅蓄电池的工作原理

4 其它常见的几种电池

1 概述 化学电源

电能是现代社会生活的必需品,电能是最重要的二次能源,大部分的煤和石油制品作为一次能源用于发电。煤或油在燃烧过程中释放能量,加热蒸汽,推动电机发电。煤(或油)燃烧过程就是它和氧气发生化学变化的过程,所以“燃煤发电”实质是化学能®机械能®电能的过程,这种过程通常要靠火力发电厂的汽轮机和发电机来完成。另外一种把化学能直接转化为电能的装置,统称化学电池或化学电源。如收音机、手电筒、照相机上用的干电池,汽车发动机用的蓄电池,钟表上用的钮扣电池等都是小巧玲珑携带方便的日常用品。那末哪些化学体系可以设计成为实用的电池呢?

化学电池都与氧化还原反应有关。在18世纪末,人们把与氧化合的反应叫氧化反应,而把从氧化物中夺取氧的反应叫还原反应。到19世纪中叶,有了化合价的概念,人们把化合价升高的过程叫氧化,把化合价降低的过程叫还原。20世纪初建立了化合价的电子理论,人们把失电子的过程叫氧化,得电子的过程叫还原。例如:

这两个式子分别代表两个氧化还原半反应,两个半反应组合成一个氧化还原反应:

上式代表锌片和硫酸铜溶液发生置换反应生成硫酸锌和金属铜的离子反应方程式。反应过程中电子由Zn转移给Cu2+,Zn失去电子被氧化为Zn2+,Zn本身是还原剂,它使Cu2+还原为Cu,所以Cu2+本身则是氧化剂。有失电子的一方,就有得电子的一方,电子得与失一定同时发生,即氧化与还原一定同时发生。

凡涉及电子转移的反应都属于氧化还原反应,若这些电子能顺一定方向流动便成为电流。按图2—10所示,左边烧杯里盛硫酸锌溶液,并插入锌片,右边烧杯里盛硫酸铜溶液,并插入铜片;两个烧杯之间用“盐桥”相联。(盐桥是一个盛KCl饱和溶液胶冻的U形管,用以构成电子流的通路)。锌片和铜片之间用电线相联结,中间串联一个电压表(或电流表),电表指针的偏转证明上述装置确有电流产生,这就成为由锌电极(Zn—ZnSO4)和铜电极(Cu-CuSO4)组成的一个电池,简称锌-铜电池。在这个装置里,锌片并没有和CuSO4溶液相接触,但确实可以看到在锌极发生的是Zn片溶解生成 Zn2+,在铜极则有Cu2+还原成金属铜析出在铜片上,电子由锌极流向铜极,电流方向反之,即由铜极流向锌极,电流表指针向正方向偏转指明铜极为正极,锌极为负极。两个电极反应分别是:

正极:Cu2+ + 2e- ® Cu

负极: Zn ® Zn2+ + 2e-

若 Zn2+和 Cu2+的浓度都是 1.0 mol×L-1,用高阻抗伏特计测得两极电势差为1.1V,即该电池的电动势为1.1V。若用铁片和硫酸亚铁溶液代替上述锌电极,则组成铁-铜电池。当Fe2+和Cu2+浓度都是1.0 mol. L-1时,测得电动势为0.75V。若以Ag和AgNO3溶液(1.0 mol×L-1)代替铜电极,组成了锌-银电池,其电动势则为1.6V。与上述电池相关的氧化还原反应,电子流动方向和电池电动势(E)如下:

这几个反应是读者熟悉的金属置换反应,按图2-10所示原理可以装成经典的化学电池,在上个世纪它们曾是实用的化学电源。

电池的电动势决定于电极得失电子的能力和溶液的浓度。电极得失电子的能力,用“电极电势”表示,它是一类相对数据,表2-6列举了一些手册里记载的水溶液中的标准电极电势Eq。其中“标准”两字是指电极反应中的物质都处于标准状态,即溶液中离子浓度都是 lmol×L-1,气态物质的分压都是 100 kPa,温度为 298K(25℃)。以氢电极作为比较的标准,指定氢电极的标准电极电势为零:

2H+(1.0 mol×L-1)+ 2e-® H2(100kPa)

其他电极与之相比,如,表示铜电极电势比氢电极高0.34V;而= -0.76V,表示锌电极电势比氢电极低 0.76 V。由此可以求得铜电极电势比锌电极高1.10 V,即锌-铜电池的电动势为 1.10 V。

利用表2-6数据,还可以判别水溶液中氧化还原反应的方向。电极反应物质有氧化态与还原态,在书写反应方程式时,氧化态物质写在左边,得电子变为还原态,还原态物质写在右边。电极反应的Eq值越大,表示氧化态物质得电子能力越大,即氧化能力越大。

如表里左下方的氧化态物质F2,Cl2。,S2O82-,MnO4-等都是很强的氧化剂。反之Eq值越小,氧化态得电子能力越小或还原态失电子能力越大,亦即右上方还原态物质如 K,Na,Zn等都是强还原剂。由此可知表中左下方的氧化态物质可以和右上方的还原在物质起反应;反之右下方的还原衣物质不能和左上方氧化态物质起反应。例如 H+和 Fe可以起反应生成H2和Fe2+,而H+不能和Ag起反应,此即铁能和酸起置换反应放出H2,而银不能和酸起反应。同理,可以判断Cl2能氧化Br-或I-,但Fe3+只能使I-变为I2,而不能使Br-变为Br2。化学手册里有许多常见物质的有关Eq值可供参考。

任何两个电极反应都可组成一个氧化还原反应,理论上都可以设计成一个电池,但真要做成一个有实际应用价值的电池并非易事。目前我们最熟悉而又经常使用的莫过于锌-锰干电池和铅蓄电池。

2 锌-锰干电池的工作原理

以上列举的几种电池有溶液,便于说明原理,但不便于携带。日常用的收音机,手电筒里使用的都是干电池,其电压一般为1.5V,电容量随体积大小而异(分1号,2号,3号,4号,5号等)。外壳用锌皮作为负极,中心为正极,是一根导电性能良好的石墨棒,裹上了一层由 MnO2,炭黑及NH4Cl溶液混合压紧的团块。两个电极之间的电解液是由NH4Cl,ZnCl2,淀粉和一定量水组成,将其加热调制成浆糊并趁热灌入锌筒,冷却后成半透明的胶冻不再流动,但可以导电。锌筒上口加沥青密封,防止电解液渗出。锌-锰干电池的电极反应为

锌负极: Zn+4NH4Cl®(NH4)2ZnCl4+2NH4++2e-

锰正极: MnO2+H2O+e-®MnO(OH)+OH-

在使用过程中,电子由锌极流向锰极(电流方向相反),锌皮逐渐消耗,MnO2也不断被还原,电压慢慢降低,最后电池失效。这种电池是一次性消费品,但锌皮不可能完全消耗掉,所以旧电池可回收锌。锌既然是消耗性的外壳,在使用过程中就会变薄以致穿孔,这就要求在锌皮外加有密封包装,有些劣质产品,在使用过程中发生“渗漏”现象,即是没有按要求做的缘故。

3 铅蓄电池的工作原理

电池放电到一定程度,可以利用外电源进行充电后再用,这样充电放电可以反复几百次。汽车的启动电源常用铅蓄电池,其结构如图2-12所示。

电池内有一排铅锑合金的栅格板,栅孔为细的铅粉泥所填满。栅板交替由两块导板相联,分别成为顶部的两个电极。整个电极板在使用之前先浸泡在稀硫酸溶液中进行电解处理,在阳极,Pb被氧化成为二氧化铅(PbO2),在阴极,形成海绵状金属铅。干燥后,PbO2为蓄电池的正极,海绵状铅为负极。所用电解液为 30%的硫酸(H2SO4),因此这类电池可以也叫酸性蓄电池。放电时,电极反应和电池反应如下:

正极: PbO2 + 2H2O ® PbO2 + SO42- + 4H+ + 2e-

负极: PbSO4 + 2e- ® Pb + SO42-

放电反应:PbO2 + Pb + 2H2SO4 ® 2PbSO4 + 2H2O

放电之后,正负两极都生成了一层硫酸铅(PbSO4),到一定程度就必须充电。充电时是将一个电压略高于蓄电池的直流电源与它相接, PbO2电极上的PbSO4放出电子被氧化为PbO2,Pb极上的PbSO4接受电子被还原为Pb,于是蓄电池的电极恢复原状,又可放电。充电时的电极反应和电池反应恰好是放电时的逆反应:

PbO2极:PbSO4 + 2H2O ®PbO2 + SO42- + 4H+ + 2e-

Pb极: PbSO4 + 2e- ®Pb + SO42-

充电反应:2PbSO4 + 2H2O ®PbO2 + Pb + 2H2SO4

铅蓄电池放电和充电过程可以合并写为

铅蓄电池每个单元电压为2.0V左右,汽车用的电瓶一般由3个单元组成,即工作电压在6.0V左右。若电容量为几十至一百安培,放电时,单元电压降到 1.8V,就不能继续使用,必须进行充电。只要按规定及时充电,使用得当,一个电池可以充放电300多次,否则使用寿命会大大降低。这种蓄电池具有电动势高、电压稳定、使用温度范围宽、原料丰富、价格便宜等优点。主要缺点是笨重、防震性差、易溢出酸雾、维护不便、携带不便等。针对这些问题,科技工作者认真不断地从电极材料、隔板材料、电解液组成、电池槽体、整体密封等多方面进行改进。自80年代以来各种新型的铅蓄电池逐渐问世,它们在汽车工业、通讯业、飞机、船舶、矿山、军工等方面都有广泛应用。在当今各种电池中,就其总产量而言,铅蓄电池还是占90%。

4 其它常见的几种电池

新技术的发展,迫切要求研制体积小、质量轻容量大、保存时间长的各种新型化学电源。现在已经商品化的电池有以下几种。

碱性蓄电池 日常生活中用的充电电池就属于这类。它的体积、电压都和干电池差不多,携带方便,使用寿命比铅蓄电池长得多,使用恰当可以反复充放电上千次,但价格比较贵。商品电池中有镍-镉(Ni—Cd)和镍-铁(Ni-Fe)两类,它们的电池反应是

反应是在碱性条件下进行的,所以叫碱性蓄电池。

银-锌电池 电子手表、液晶显示的计算器或一个小型的助听器等所需电流是微安或毫安级的,它们所用的电池体积很小,有“钮扣”电池之称。它们的电极材料是Ag2O2和Zn,所以叫银-锌电池。电极反应和电池反应是:

负极:2Zn + 4OH- ® 2Zn(OH)2 + 4e-

正极:Ag2O2 + 2H2O + 4e- ® 2Ag + 4OH-

电池反应:2Zn + Ag2O2 + 2H2O ® 2Zn(OH)2 + 2Ag

利用上述化学反应也可以制作大电流的电池,它具有质量轻、体积小等优点。这类电池已用于宇航、火箭、潜艇等方面。

燃料电池 氢气(H2),甲烷气(CH4),乙醇(C2H5OH)等物质在氧气(O2)中燃烧时,能将化学能直接转化为电能,这种装置叫燃料电池。这些气体分子

首先在电极催化剂的作用下离子化,再与 O2起反应生成 CO2和 H2O。这种电池能量利用率可高达80%(一般柴油发电机只有40%左右),反应产物的污染也少。一种 10~20 kW的碱性 H2—O2燃料电池已成功地用于航天飞机,在美国、日本还有若干示范性的CH4-O2燃料电池发电站,但目前这类电极成本很高,气体净化要求也高,短期内难于普及。

此外,银-锰电池、锂-碘电池、钠-硫电池、太阳能电池等多种高效、安全、价廉的电池都在研究之中。化学电源的研究和开发是化学科学的重要研究领域之一,也是能源工作者研究领域之一。

我承认我是抄的~呵呵

回答(5):

化学能可以转化成电能!电池里面发生了化学反应,转化成了电能!