已知cos(α+π⼀4)=-4⼀5,0<α<π⼀2,则cosα=

2024-11-13 04:20:19
推荐回答(3个)
回答(1):

已知cos(α+π/4)=-4/5,0<α<π/2
所以π/4<α+π/4<3π/4
所以sin(α+π/4)=√[1-(-4/5)²]=3/5

所以cosα=cos[(α+π/4)-π/4]=cos(α+π/4)cos(π/4)+sin(α+π/4)sin(π/4)
=(-4/5)*(√2/2)+(3/5)*(√2/2)
=-√2/10

如果不懂,请Hi我,祝学习愉快!

回答(2):

0<α<π/2

则:π/4<α+π/4<3π/4
又cos(α+π/4)=-4/5
所以,sin²(α+π/4)=1-cos²(α+π/4)=9/25
sin(α+π/4)>0
所以,sin(α+π/4)=3/5
cosα=cos[(α+π/4)-π/4]
=cos(α+π/4)cos(π/4)+sin(α+π/4)sin(π/4)
=(-4/5)(√2/2)+(3/5)(√2/2)
=-√2/10

祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O

回答(3):

楼主的问题本身有问题!

解:
因为:0<α<π/2
所以:α是第一象限角,sinα>0、cosα>0
(sinα)^2+(cosα)^2=1
sinα=√[1-(cosα)^2]
cos(α+π/4)=-4/5
cosαcos(π/4)-sinαsin(π/4)=-4/5
cosα(√2)/2-sinα(√2)/2=-4/5
cosα-sinα=-(4/5)√2
cosα-√[1-(cosα)^2]=-(4/5)√2
cosα+(4/5)√2=√[1-(cosα)^2]
(cosα)^2+[(8√2)/5]cosα+32/25=1-(cosα)^2
2(cosα)^2+[(8√2)/5]cosα+7/25=0
cosα={-[(8√2)/5±√{[(8√2)/5]^2-56/25}}/4
={-[(8√2)/5]±6(√2)/5}/4
=-(√2)/10
cosα1=-(√2)/10
cosα2=-(7√2)/10
可见:cosα<0,这与已知0<α<π/2相矛盾
因此:楼主的问题本身有问题!