求不定积分∫x ln^2xdx

2024-11-19 11:22:08
推荐回答(1个)
回答(1):

原式=1/2∫ln²xdx²
=1/2*x²ln²x-1/2∫x²dln²x
=1/2*x²ln²x-1/2∫x²*2lnx*1/xdx

=1/2*x²ln²x-1/2∫lnxdx²

=1/2*x²ln²x-1/2*x²lnx-1/2∫x²dlnx

=1/2*x²ln²x-1/2*x²lnx-1/2∫x²*1/xdx

=1/2*x²ln²x-1/2*x²lnx-1/2∫xdx

=1/2*x²ln²x-1/2*x²lnx-1/4*x²+C