解:2a1+a2=a32a1+a1q=a1q²q²-q-2=0(q+1)(q-2)=0q=-1或q=23a6=8a1a33a1q⁵=8a1²q²8a1=3q³q=-1时,a1=-3/8an=a1qⁿ⁻¹=(-3/8)(-1)ⁿ⁻¹=(3/8)·(-1)ⁿq=2时,a1=3·2³/8=3an=a1qⁿ⁻¹=3·2ⁿ⁻¹综上,得:数列{an}的通项公式为an=(3/8)·(-1)ⁿ或an=3·2ⁿ⁻¹