lim(x~0)∫(0,x)(x-t)f(t)dt/x∫(0,x)(x-t)dt=lim(x~0)[x∫(0,x)f(t)dt-∫(0,x)tf(t)dt]/[x^2∫(0,x)dt-x∫(0,x)tdt]=lim(x~0)[∫(0,x)f(t)dt+xf(x)-xf(x)]/[3x^2/2]=lim(x~0)[∫(0,x)f(t)dt]/[3x^2/2]=lim(x~0)[f(x)]/3x=∞