lim(x→0). (arctanx⼀x)的1/x^2次方=?题在为定式极限中,目测要用洛必达法则

2024-11-19 03:22:48
推荐回答(1个)
回答(1):

x→0
lim (arctanx/x)^(1/x^2)
=lim e^ln (arctanx/x)^(1/x^2)
=e^lim ln (arctanx/x)^(1/x^2)
考虑
lim ln (arctanx/x)^(1/x^2)
=lim ln(arctanx/x) / x^2
=lim ln(1+arctanx/x-1) / x^2
根据等价无穷小:ln(1+x)~x
=lim (arctanx/x - 1) / x^2
=lim (arctanx-x) / x^3
该极限为0/0型,根据L'Hospital法则
=lim (arctanx-x)' / (x^3)'
=lim (1/(1+x^2) - 1) / 3x^2
=lim (1-1-x^2) / (1+x^2)(3x^2)
=lim -(x^2) / (3x^2)(1+x^2)
=lim -1 / 3(1+x^2)
=-1/3
故,原极限=e^(-1/3)
有不懂欢迎追问