y=(x-1)^2*(x-2)^3单调区间

2024-11-15 12:57:33
推荐回答(3个)
回答(1):

求导函数y′=[(x-1)^2*(x-2)^3]′=2(x-1)*(x-2)^3+3(x-1)^2*(x-2)^2
=(x-1)*(x-2)^2[2*(x-2)+3(x-1)]
=(x-1)*(x-2)^2(5x-7)
故当x>2时,y是增区间增函数
当7/5<x<2,y是增函数,
当1<x<7/5,y是减函数
当x<1,y是增函数,
综上知增区间(2,正无穷大),(7/5,2),(负无穷大,1)
减区间(1,7/5)

回答(2):

y的导数为x^(2/3)+(x-1)*(2/3)*x^(-1/3)
领y的导数等于0,整理得x^(-1/3)*((5/3)
x-2/3)=0
得x=0,x=2/5.
当x0
02/5
,
y的导数>0
所以y有极大值x=0,y=0.有极小值x=2/5,y=。。。
单调递增区间为x2/5
单调递减区间为0
应该没问题,如有疑问请指正

回答(3):

y=(x-1)^2*(x-2)^3
y'=2(x-1)(x-2)^3+3(x-1)^2(x-2)^2
=(x-1)(x-2)^2[2(x-2)+3((x-1)]
=(x-1)(x-2)^2(5x-7)
y'>0 ==>x<1或x>7/5
y'<0==> 1∴函数递增区间为(-∞,1),(7/5,+∞) (x=2不改变单调性)
递减区间为(1,7/5)