为什么A的伴随矩阵的行列式等于A的行列式

2024-11-16 01:51:43
推荐回答(2个)
回答(1):

要a是一个三阶行列式才是,a^(-1)=a^*/|a|,|a^*|=||a|*a^(-1)|,a的行列式是一个数提出去就可以了,a的逆的行列式等于其行列式的倒数。

伴随矩阵的行列式是AA*=|A|E

那么对这个式子的两边再取行列式。

得到|A| |A*| =| |A|E |

而显然||A|E |= |A|^n

所以|A| |A*| =|A|^n

于是|A*| =|A|^ (n-1)

伴随矩阵是矩阵理论及线性代数中的一个基本概念,是许多数学分支研究的重要工具,伴随矩阵的一些新的性质被不断发现与研究。

学数学技巧

1、抓住课堂。理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。高质量完成作业。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考。

2、对不会做的错题:弄懂每一个步骤,并思考为什么,针对算错了的错题,如果经常出现这样的情况那么你就要:改变计算方式和习惯,比如学会检查和算两次提高准确度。

重点是要去思考,思考的深度越深,学习得就更加透彻,就会用少量的题达到很高的效果。但这样的思考不是凭空的,而是建立在错题上的思考。

回答(2):

因为AA*=|A|E
因此
|AA*|=|A|^n
即|A||A*|=|A|^n
|A*|=|A|^(n-1)