求均值不等式习题

2024-11-22 21:30:03
推荐回答(1个)
回答(1):

2.(2011湖南永州,22,8分)某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为
8︰ 3︰2,且其单价和为130元.
⑴请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?
⑵若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?

解:(1): 因为单价和为130,且单价比是8:3:2,所以单价分别是80,30,20元
(2): 设篮球为x,乒乓球为y,则羽毛球为4x 所以:x+y+4x=80,①且,y≦15②,
解①②得x≥13
又因为:80x+30×4x+20y≦3000③
解①③得x≦14
综上所述: 13≤x≦14
因为x为整数,所以x=14或13
只有两种方案:篮球14,羽毛球56,乒乓球10个;篮球13,羽毛球52,乒乓球15个 ,
4,(2011乌兰察布),某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.
(l)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?

解:(1)设搭配A种造型x个,则B种造型为(50-x)个,依题意得
8x+5(50-x)≤349 ① 4x+9(50-x)≤295②
解这个不等式组得 , ∴31≤x≤33 ∵x是整数, ∴x可取31,32,33
∴可设计三种搭配方案 ①A种园艺造型31个B种园艺造型19个
②A种园艺造型32个B种园艺造型18个
③A种园艺造型33个B种园艺造型17个.
(2)方法一: 由于B种造型的造价成本高于A种造型成本.所以B种造型越少,成本越低,故应选择方案③,成本最低,
最低成本为 33×800+17×960=42720(元)
方法二: 方案①需成本31×800+19×960=43040(元)
方案②需成本32×800+18×960=42880(元)
方案③需成本33×800+17×960=42720(元)
∴应选择方案③,成本最低,最低成本为42720元.

7、(2011广东茂名)某养鸡场计划购买甲、乙两种小鸡苗共2 000只进行饲养,已知甲种小鸡苗每只2元,乙种小鸡苗每只3元.
(1)若购买这批小鸡苗共用了4 500元,求甲、乙两种小鸡苗各购买了多少只? (2分)
(2)若购买这批小鸡苗的钱不超过4 700元,问应选购甲种小鸡苗至少多少只? (3分)
(3)相关资料表明:甲、乙两种小鸡苗的成活率分别为94%和99%,若要使这批小鸡苗的成活率不低于96%且买小鸡的总费用最小,问应选购甲、乙两种小鸡苗各多少只?总费用最小是多少元?

解: (1)设购买甲种小鸡苗x只,那么乙种小鸡苗为(2000-x)只.
根据题意列方程,得2x+3(2000-x)=4500, x=1500(只), 2000-x=2000-1500=500(只),
·即:购买甲种小鸡苗1500只,乙种小鸡苗500只.
(2)根据题意得:2x+3(2000-x)≤4700, x≥1300, 即:选购甲种小鸡苗至少为1300只.
(3)设购买这批小鸡苗总费用为y元,根据题意得:y=2x+3(2000-x)=-x+6000, ①
又由题意得:94%x+99%(2000-x)≥2000×96%,② 解得:x≤1200, 因为购买这批小鸡苗的总费用y随x增大而减小,所以当x=1200时,总费用y最小,乙种小鸡为:2000-1200=800(只),即:购买甲种小鸡苗为1200只,乙种小鸡苗为800只时,总费用y最小,最小为4800元.

8.(2009•威海)响应“家电下乡”的惠农政策,某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍,购买三种电冰箱的总金额不超过132 000元.已知甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.
(1)至少购进乙种电冰箱多少台?
(2)若要求甲种电冰箱的台数不超过丙种电冰箱的台数,则有哪些购买方案?

解(1).假设购进乙型号的电冰箱是X台,则甲型号的电冰箱是2X,丙型号的电冰箱是80-3X,总金额不超过132000元,
1200×2X+1600X+2000(80-3X)≤132000
计算结果 X≥14台
(2).甲冰箱的台数不超过丙种的台数,2X≤80-3X,
计算结果 X≤16台,乙型号的电冰箱是14,15,16台,甲型号的电冰箱是28,30,32台,丙型号的电冰箱是38,35,32台。

9.、某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力x块.
(1)求该工厂加工这两种口味的巧克力有哪几种方案?
(2)设加工两种巧克力的总成本为y元,求y与x的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?

解:设加工的原味核桃巧克力x块,那么加工的原味益智巧克力50-x块(或设为b块)
13x+5(50-x)≤410(1) 4x+14(50-x)≤520(2)
由(1) 13x+250-5x≤410 8x≤160 x≤20
由(2) 4x+700-14x≤520 10x≥180 x≥18
x的取值范围18≤x≤20
所以x可以得18,19,20
方案有 原味核桃巧克力 益智核桃巧克力 一 18 32 二 19 31 三 20 30 第一种方案成本:1.2x18+2x32=85.6元 第二种方案成本:1.2x19+2x31=84.8元 第一种方案成本:1.2x20+2x30=84元 第三种方案最省钱
11、园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?

解:(1)设A种造型X个,则B种造型为(50-X)个
80X+50*(50-X)≤3490 解得30X≤990(X≤33)
40X+90*(50-X)≤2950 解得50X≥1550(X≥31) 所以X=31,32,33
这3种搭配是①A=31个 B=19个 ② A=32个 B=18个 ③A=33个 B=17个
(2)设总费用为y,A种造型X个,则B种造型为(50-X)
Y=800x+960(50--x) y=48000-160x
即总费用随x的增大而减少。所以当x=33时所以成本最低,最低成本为 33×800+17×960=42720(元)