如果f(x)在[a,b]上一致连续,证明f(x)在[a,b]上有界

2024-12-04 23:36:28
推荐回答(2个)
回答(1):

用反证法。若无界,
对任意ε>0,存在δ>0,使得x1,x2属于(a,b),且两数差的绝对值<δ时,两数函数值的绝对值<ε.
任取xn属于(a,b),xn的极限为a+,则{xn}为柯西数列。故存在正整数N,当m,n>N时,xn,xm的绝对值<δ,故两函数值的绝对值<ε,从而{f(xn)}为柯西数列,故{f(xn)}收敛。任意xn1,xn2趋于a+(n趋于无穷大),显然有
x11,x12,x21,x22,…,xn1,xn2,…趋于a+.
可知f(xn1),f(xn2)的极限均为a+
可知{f(x)}当x趋于a的极限存在有限。
同理可得其他

回答(2):

闭区间上的一致连续函数一定在这个区间内连续,闭区间上连续的函数一定有界。