化简sin(π⼀2+α)cos(3π-α)tan(π+α)⼀cos(π⼀2-α)cos(-α-π)

2025-04-04 14:13:31
推荐回答(2个)
回答(1):

解:[sin(π/2+α)cos(3π-α)tan(π+α)]/[cos(π/2-α)cos(-α-π)]
=[cosα(-cosα)tanα)/[sinα(-cosα)] (应用诱导公式)
=[cosα(sinα/cosα)]/sinα
=1。

回答(2):

sin(π/2+α)cos(3π-α)tan(π+α)/cos(π/2-α)cos(-α-π)
=[cosα*(-cosα)*tanα]/[sinα*(-cosα)]
=[-sinα*cosα]/[sinα*(-cosα)]
=1.