证明:
∵∠BAC=180-(∠B+∠C),AE平分∠BAC
∴∠CAE=∠BAC/2=90-(∠B+∠C)/2
∵AD⊥BC
∴∠C+∠CAD=90
∴∠CAD=90-∠C
∴∠DAE=∠CAE-∠CAD
=90-(∠B+∠C)/2-90+∠C
=(∠C-∠B)/2
AE平分∠BAC,可知∠BAE=1/2∠BAC,而∠AED=∠B+∠BAE,即∠AED=∠B+1/2(180°-∠B-∠C),AD⊥BC,∠AED+∠EAD=90°,带入可得∠DAE=1/2(∠C-∠B),望采纳!
证明:在AB上取AF=AC
∵AE平分∠BAC
∴∠BAE=∠EAC
AF=AC AE=AE
∴△AFE≌△AEC
∴∠AFE=∠C,∠AEF=∠AEC;
设∠EAD为x
∵AD⊥BC
∴∠AED=90°-x
∠AEF=∠AED=90°-x
∴∠FEB=180°-2(90°-x)=2x
∵∠B+∠FEB=∠AFE
∴∠B+2x=∠C
∠EAD=x=1/2(∠C-∠B)