众数,中位数,平均数各有什么优缺点?他们各自适用哪些问题情景?

2024-11-05 23:37:04
推荐回答(3个)
回答(1):

平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。

这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有 。
平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。
中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。
众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。
在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。
平均数、中位数和众数的联系与区别: 平均数应用比较广泛,它作为一组数据的代表,比较稳定、可靠。但平均数与一组数据中的所有数据都有关系,容易受极端数据的影响;简单的说就是表示这组数据的平均数。中位数在一组数据中的数值排序中处于中间的位置,人们由中位数可以对事物的大体进行判断和掌控,它虽然不受极端数据的影响,但可靠性比较差;所以中位数只是表示这组数据的一般情况。众数着眼对一组数据出现的频数的考察,它作为一组数据的代表,它不受极端数据的影响,其大小与一组数据中的部分数据有关,当一组数据中,如果个别数据有很大的变化,且某个数据出现的次数较多,此时用众数表示这组数据的集中趋势,比较合适,体现了整个数据的集中情况。 平均数、中位数和众数它们都有各自的的优缺点:

回答(2):

众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个或者不存在。用众数代表一组数据,可靠性较差,不过,众数不受极端数据的影响,并且求法简便。在一组数据中,如果个别数据有很大的变动,选择中位数表示这组数据的“集中趋势”就比较适合
中位数是指将统计总体当中的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的变量值就称为中位数,中位数和众数不同,中位数不一定在这组数据中。而众数必定在该组数据。中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,有时用它代表全体数据的一般水平更合适。
平均数是指在一组数据中所有数据之和再除以这组数据的个数。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点。

回答(3):

众数是在一组数据中,出现次数最多的数,如果一组数据出现次数最多的数据有多个,那么众数就有多个。如选做团体操的队员,进某种品牌的货物或某公司员工的普遍工资等适合用众数。
中位数在一组数据的数值排序中处于中间的位置,它的优点是不受偏大或偏小数据的影响。
平均数应用最为广泛,用它作为一组数据的代表,比较可靠和稳定,它与这组数据中的每一个数据都有关系,但容易收到极端数据的影响。如平均成绩、平均身高、体重等适合用平均数。