简单计算一下即可,答案如图所示
先求出P(x)积分,然后套公式就行
dy/dx + y/x = sinx/x 为一阶线性微分方程,通解是
y = e^(-∫dx/x)[∫(sinx/x)e^(∫dx/x)dx + C]
= (1/x)[∫(sinx/x)xdx + C] = (1/x)[∫sinxdx + C]
= (1/x)(-cosx+C)
dy/dx+y/x=sinx/x
解:xdy/dx+y=sinx
xdy+ydx=sinxdx
d(xy)=sinxdx
两边积分
xy=-cosx+c
y=(c-cosx)/x