求证1-1⼀2+1⼀3-1⼀4……+1⼀(2n-1)-1⼀2n=1⼀(n+1)+1⼀(n+2)+……1⼀2n

2024-11-07 09:40:10
推荐回答(1个)
回答(1):

可以用
数学归纳法
证明:
如下:
当n=1时,左侧=1-1/2=1/2,右侧=1/2,结论成立;
假设n=k成立,则1-1/2+1/3-1/4……+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+……1/2k
当n=k+1时,左侧={1-1/2+1/3-1/4……+1/(2k-1)-1/2k}+1/(2k+1)-1/(2k
+2)
右侧=1/(k+2)+……1/2k+1/(2k+1)+1/(2k
+2)={1/(k+1)+1/(k+2)+……1/2k}+1/(2k+1)+1/(2k
+2)-1/(k+1)=)={1/(k+1)+1/(k+2)+……1/2k}+1/(2k+1)-1/(2k
+2)
根据假设,所以当n=k+1时,左侧=右侧,
所以....