我是一个13岁小学生,还有7天考试,希望老师们帮我列举期末冲刺题型

2024-12-01 22:23:20
推荐回答(4个)
回答(1):

我知道一题:1+1+199+1+1+199+1+1+199=?

回答(2):

利息=本金×利率×时间
圆环面积=圆周率×(大圆半径平方-小圆半径平方)

回答(3):

常用的数量关系式
1、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
2、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
3、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
4、加数+加数=和 和-一个加数=另一个加数
5、被减数-减数=差 被减数-差=减数 差+减数=被减数
6、因数×因数=积 积÷一个因数=另一个因数
6、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
在有余数的除法中: (被除数-余数)÷除数=商
7、总数÷总份数=平均数
8、相遇问题
相遇路程=速度和×相遇时间
或相遇路程=快车速度×相遇时间+慢车速度×相遇时间

相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
9、利息=本金×利率×时间
10、收入-支出=结余 单产量×数量=总产量
量的计量
在日常生活、生产劳动和科学研究中,经常要进行各种量的计量,我国法定计量单位与国际计量单位一致。
名数;数和单位名称合起来叫做名数。
单名数:只含有一种单位名称的名数叫单名数。
复名数:含有两种或两种以上单位名称的名数叫复名数。
×进率
高级单位的名数 低级单位的名数
÷进率

长度单位换算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面积单位换算
1平方千米=1000000平方米 1公顷=10000平方米 1平方千米=100公顷
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
体积(容积)单位换算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
1立方分米=1升 1立方厘米=1毫升 1升=1000毫升
质量单位换算
1吨=1000 千克 1千克=1000克 1千克=1公斤
人民币单位换算
1元=10角 1角=10分 1元=100分
时间单位换算
1世纪=100年 1年=12月=4个季度 大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时
1时=60分 1分=60秒 1时=3600秒

练习:填空
(1). 1时30分=( )时 40分=( )时
时=( )分 0.7时=( )分
平方米=( )平方分米 125克=( )千克
2 立方分米=( )升 =( )毫升
10 吨=( )吨( )千克
( )元=50元8角1分
(2).1米∶ 10厘米 =( )∶( )=( )∶( )
100毫升∶1升 =( )∶( )=( )∶ ( )
(3).填上适当的计量单位名称。
小华身高165( ) 一张课桌宽50( ) 一间教室的占地面积56( )
双黄连口服液每支容量10( ) 家庭保温瓶容积2.5( )
一种集装箱体积是50( ) 一个鸡蛋重约65( ) 大拇指指甲约1( )
(4). 李老师7:30上班,到17:30下班,中午吃饭午休2小时。李老师每天在校工作( )小时。
运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。
运算顺序
1. 小数四则运算的运算顺序和整数四则运算顺序相同。
2. 分数四则运算的运算顺序和整数四则运算顺序相同。
3. 没有括号的混合运算:
同级运算从左往右依次运算;两级运算 先算乘、除法,后算加减法。
4. 有括号的混合运算:
先算小括号里面的,再算中括号里面的,最后算括号外面的。
5. 第一级运算:
加法和减法叫做第一级运算。
6. 第二级运算:
乘法和除法叫做第二级运算

应用题
简单应用题
简单应用题只需要一步计算就能求得答案的应用题。
简单应用题都是由两个己知条件和一个问题组成的,而且问题与两个已知条件都是直接相关的,也就是说,都可以由已知条件经过一步计算直接求出答案。至于在不同的题目里用什么方法计算.则需要认真分析题中的数量关系(已知条件和问题的关系),然后根据四则运算的意义,以及已知的是哪两个条件来确定复合应用题
复合应用题就是不能一步计算求得答案,而需要两步或者两步以上的计算才能求得答案的应用题。
一. 解答复合应用题分析方法一般有两种:
①分析法: 问题 →条件 ②综合法; 条件 → 问题
二.解答应用题-般步骤:
①弄清题意,找出题中已知条件和所求问题。
②分析题中数量关系,确定先算什么,再求什么,然后算什么。
③列式求得结果。
④检验是否正确,写出答语。
三.解答方法:⑴ 分步列算式解答。 ⑵列综合算式解答。
相遇问题
重点理解关键词:同时 相对(相向)而行 速度和 两地路程 相遇
相遇问题基本数量关系式:
两地距离=速度和×相遇时间
小学数学几何公式表(理解记忆)
平面图形
图形 名称 字母的含义 周长c 面积 s

正方形 a—边长 C=4a S=a2

长方形 a—长 b-宽 C=2(a+b) 或C=2a+2b S=ab

三角形 a---底边 h—a 边上的高 S= ah 或 S=ah÷2 或S=

梯形 S=(a+b)h/ a— 上底 b-下底h-高 S= (a+b)h或 S=(a+b)h÷2

圆 r-半径
C=πd=2πr r—半径 d-直径
π—圆周率 C=πd或C=2πr S=πr2
d= 或d=c÷ π
r= 或r=c÷π÷2

圆环 R-外圆半径
S=π(R2-r2) r-内圆半径
R-外圆半径 环=S外-S内=π(R2-r2)

立体图形
图形 名称 字母含义 S — 面积 V — 体积

正方体 a-棱长 棱长和=12a S表=6a2 S底= a2
V= S底h 或 V=a3

长方体 a-长
S=2(ab+ac+bc) a-长 b-宽
h-高 S表=2(ab+ah+bh)( 两个底面)
S表ab+2ah+2bh(没盖)S表2ah+2bh(没底面)
V=abh或V=Sh 棱长和=(a+b+h)×4

圆柱 r- C=2 r --底面圆半径
d—底面直径
C—底面周长 h-高
S底—底面积
S侧—侧面积
S表—表面积 S底=πr2 V=S底h=πr2h
S侧=Ch =2πr h=πd h
两个底面:S表=S侧+2S底
没盖:S表= S侧+S底
没有底面:S表= S侧

空心管 R-外圆半径
V=πh(R2-r2) r-底面内圆半径
R-底面外圆半径h-高 V管=V外-V内=(πR2-πr2 ) h=π(R2-r2) h

直圆锥 r-底半径
V=πr2h/3 h-高 r—底面半径
S—底面积 V= Sh 或 V= πr2h

比、正比例和反比例
1.比的意义:两个数相除又叫做这两个数的比.
比的基本性质:比的前项和后项都乘或除以相同的数(0除外),比值不变。
2.比、分数与除法的关系:
a:b= = a÷b (b≠0)
3.求比值和化简比的联系与区别:
意义 方法 结果
求比值 比的前项除以比的后项所得的商叫做比值。 ①前项除以后项②前项和后项都乘或除以相同的数(0除外) 一个数(整数、小数、分数)
化简比 把两个数的比化成最简单的整数比 一个最简比
最简比:前项和后项的最大公约数只有1的比叫最简比。
5.按比例分配的实际问题
6.正比例和反比例的区别与联系:
相同点 不同点
特征 关系式
正比例 两种相关联的变化的量 两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定)

反比例 两种量中相对应的两个数的积一定 x×y= k(一定)
7.图上距离和实际距离的比叫做这幅图的比例尺。
图上距离:实际距离=比例尺

回答(4):

英语:完形填空,听力,看图写话