1 cosβ =√5/5, sinα = √10/10
sin²α+cos²α=1 ∴ cosα=2√5/5 sin²β+cos²β=1 ∴cosβ=3√10/10 sin(α+β)=sinαcosβ+cosαsinβ =√2/2
∵α、β为锐角
∴α+β=45°或α+β=135°
2 sinα=-(40/41),且π<α<(3π/2)
cosα=-9/41
tgα=40/9
tan(π/4 +α)
=(1+tgα)/(1-tgα)
=-49/31
3 α+β)的正切=(α的正切+β的正切)/(1-α的正切乘以β的正切)=7/9 则(α+β+γ)的正切=【(α+β)的正切+γ的正切】/【1-(α+β)的正切乘以γ的正切】=1=45°的正切 所以α+β+γ=45°
4 sinα+cosα=3/4, 求sin2α
( sinα+cosα)^2=9/16
1+Sin 2α =9/16
Sin 2α=-7/16
思路:sin(a+β)=sinacosβ+cosasinβ