求极限limx→0 [cos(sinx)-cosx]/x^4的值?学霸们有劳了!!!!

2025-03-24 11:17:17
推荐回答(5个)
回答(1):

极限limx→0 [cos(sinx)-cosx]/x^4的值六分之一。

极限limx→0 [cos(sinx)-cosx]/x^4的求法:

用到了泰勒展开:

sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞

高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:

(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。

(2)应用泰勒公式可以证明区间上的函数等式或不等式。

(3)应用泰勒公式可以进行更加精密的近似计算。

(4)应用泰勒公式可以求解一些极限。

(5)应用泰勒公式可以计算高阶导数的数值。

回答(2):

极限limx→0 [cos(sinx)-cosx]/x^4的求法:

用到了泰勒展开:

sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞

扩展资料:

常用泰勒展开公式如下:

1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……

2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)

3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。(-∞

4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞

5、arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)

6、arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)

7、arctan x = x - x^3/3 + x^5/5 -……(x≤1)

8、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞

9、cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞

10、arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)

11、arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)

回答(3):

回答(4):

回答(5):