ρ=lim(n->∞)|[1/(n+1)]/(1/n)|=lim(n->∞)|n/(1+n)|=1
收敛半径是r=1/ρ=1
当x=1时
∑[x^(n+1)]/n=∑1/n
级数发散
当x=-1时
∑[x^(n+1)]/n=∑[(-1)^(n+1)/n]
级数收敛
所以幂级数∑x^(n+1)/n的收敛区间是[-1,1)
令s(x)=∑x^(n+1)/n=x∑(x^n)/n=-xln(1-x)
(-1
S(x)=∑(n+1)x^n
两边取积分:
∫S(x)dx=∑∫(n+1)x^ndx
=∑∫dx^(n+1)
=∑x^(n+1)
=x/(1-x)
两边再微分得:
S(x)=1/(1-x)^2