什么是对坐标曲面积分的外侧

2024-11-20 11:22:57
推荐回答(4个)
回答(1):

闭合曲面为曲面外部的部位为曲面外侧,开放曲面为曲面上部为外侧。

类似于向量值函数速度场由球体内侧曲面穿出去的流量不等于由球体外侧曲面穿进去的流量,至少方向都是不同的。

在计算第二类曲面积分的时候,可以想象一个非常弯的曲面(球体曲面)的内外侧,肯定要把曲面投影到xoy、yoz、xoz坐标面上,但曲面内侧和外侧的某点的法向量与x正半轴,y正半轴、z正半轴的夹角方向是不一样的。

扩展资料:

注意事项:

1、若是对x和y的积分,则曲面上侧为正,下侧为负。若是对x和z的积分,则曲面右侧为正,左侧为负。若是对y和z的积分,则曲面前侧为正,后侧为负。

2、对坐标的曲线积分,就是第二类曲线坐标积分,对投影有要求的,要分内侧于外侧,主要判断方式就是对某两个变量进行积分

3、若规定了是内侧还是外侧,则以该规定的侧面的外法线和两变量确定的平面向垂直的坐标轴夹角,为钝角则转该面投影为负,为锐角则转换为该面投影为正。

参考资料来源:百度百科-曲面积分

参考资料来源:百度百科-闭曲面

参考资料来源:百度百科-向量值函数



回答(2):

  对坐标曲面积分的外侧:闭合曲面为曲面外部的部位为曲面外侧,开放曲面为曲面上部为外侧。
  对坐标的曲线积分,就是第二类曲线坐标积分,它对投影有要求的,要分内侧于外侧,主要判断方式就是对某两个变量进行积分,其实就是在这两个变量所确定的平面上投影,若规定了是内侧还是外侧,则以该规定的侧面的外法线和两变量确定的平面向垂直的坐标轴夹角,为钝角则转该面投影为负,为锐角则转换为该面投影为正。
  设Σ为光滑曲面,函数f(x,y,z)在Σ上有定义,把Σ任意地分成n个小曲面Si,其面积设为ΔSi,在每个小曲面Si上任取一点(Xi,Yi,Zi) 作乘积f(Xi,Yi,Zi)ΔSi,并求和Σf(Xi,Yi,Zi)ΔSi,记λ=max(ΔSi的直径) , 若Σf(Xi,Yi,Zi)ΔSi当λ→0时的极限存在,且极限值与Σ的分法及取点(Xi,Yi,Zi)无关,则称极限值为f(x,y,z)在Σ上对面积的曲面积分,也叫做第一类曲面积分。即为∫∫f(x,y,z)dS;其中f(x,y,z)叫做被积函数,Σ叫做积分曲面,dS叫做面积微元。

回答(3):

对坐标曲面积分的外侧:闭合曲面为曲面外部的部位为曲面外侧,开放曲面为曲面上部为外侧。
  对坐标的曲线积分,就是第二类曲线坐标积分,它对投影有要求的,要分内侧于外侧,主要判断方式就是对某两个变量进行积分,其实就是在这两个变量所确定的平面上投影,若规定了是内侧还是外侧,则以该规定的侧面的外法线和两变量确定的平面向垂直的坐标轴夹角,为钝角则转该面投影为负,为锐角则转换为该面投影为正。
  设Σ为光滑曲面,函数f(x,y,z)在Σ上有定义,把Σ任意地分成n个小曲面Si,其面积设为ΔSi,在每个小曲面Si上任取一点(Xi,Yi,Zi)
作乘积f(Xi,Yi,Zi)ΔSi,并求和Σf(Xi,Yi,Zi)ΔSi,记λ=max(ΔSi的直径)

若Σf(Xi,Yi,Zi)ΔSi当λ→0时的极限存在,且极限值与Σ的分法及取点(Xi,Yi,Zi)无关,则称极限值为f(x,y,z)在Σ上对面积的曲面积分,也叫做第一类曲面积分。即为∫∫f(x,y,z)dS;其中f(x,y,z)叫做被积函数,Σ叫做积分曲面,dS叫做面积微元。

回答(4):

首先要搞明白什么是对坐标的曲线积分,就是第二类曲线坐标积分,它对投影有要求的,要分内侧于外侧,主要判断方式就是对某两个变量进行积分,其实就是在这两个变量所确定的平面上投影,若规定了是内侧还是外侧,则以该规定的侧面的外法线和两变量确定的平面向垂直的坐标轴夹角,为钝角则转该面投影为负,为锐角则转换为该面投影为正