求二重积分∫∫√y^2-x^2dxdy,D:0<=X<=Y,0<=Y<=1

2024-11-08 22:37:19
推荐回答(2个)
回答(1):

具体见图片

回答(2):

∫∫_D f(x,y) dσ,y∈[0,1],x = 0 --> x = y
= ∫(0~1) dy ∫(0~y) √(y² - x²) dx
Let x = ysinθ,dx = ycosθ dθ
When x = 0,θ = 0,When x = y,θ = π/2
= ∫(0~1) dy ∫(0~π/2) √(y² - y²sin²θ) (ycosθ) dθ
= ∫(0~1) dy ∫(0~π/2) y²cos²θ dθ
= ∫(0~1) dy ∫(0~π/2) y²/2 · (1 + cos2θ) dθ
= ∫(0~1) dy · y²/2 · (θ + 1/2 · sin2θ) |(0~π/2)
= ∫(0~1) dy · y²/2 · π/2
= π/4 · ∫(0~1) y² dy
= π/4 · y³/3 |(0~1)
= π/4 · 1/3
= π/12