已知三角形三边求面积

2024-11-16 18:54:21
推荐回答(4个)
回答(1):

方法一:海伦-秦九韶公式

三边是a,b,c
令p=(a+b+c)/2
则S=√[p(p-a)(p-b)(p-c)]

方法二:海伦公式

s=√[p﹙p-a)(p-b)(p-c)]
p=½(a+b+c)

拓展资料

古希腊的几何学家海伦解决了这个问题,在他的著作《度量论》一书中给出了计算公式﹣﹣海伦公式S=(其中a,b,c是三角形的三边长,p=,S为三角形的面积),并给出了证明

例如:在△ABC中,a=3,b=4,c=5,那么它的面积可以这样计算:

∵a=3,b=4,c=5

∴p==6

∴S=

事实上,对于已知三角形的三边长求三角形面积的问题,还可用我国南宋时期数学家秦九韶提出的秦九韶公式等方法解决.

如图,在△ABC中,BC=5,AC=6,AB=9

(1)用海伦公式求△ABC的面积;

(2)求△ABC的内切圆半径r.

回答(2):

这是海伦公式
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=√[p(p-a)(p-b)(p-c)]
而公式里的p为半周长:
p=(a+b+c)/2
设三角形的三边a、b、c的对角分别为A、B、C,则余弦定理为
cosC = (a^2+b^2-c^2)/2ab

S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]

设p=(a+b+c)/2
则p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,

上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]
所以,三角形ABC面积S=√[p(p-a)(p-b)(p-c)]

回答(3):

设a=50,b=47,c=40.a、b两边的夹角为X。又cosx=(a^2+b^2-c^2)/(2ab).可求出cosX。再由(sinX)^2+(cosX)^2=1.求出sinX。由面积公式得:面积S=absinX/2=881.2平方米

回答(4):

即可