如何解方程(x-4)⼀(x-5)+(x-8)⼀(x-9)=(x-7)⼀(x-8)+(x-5)⼀(x-6)

2024-11-19 06:16:10
推荐回答(3个)
回答(1):

(x-4)/(x-5)=(x-5+1)/(x-5)=1+(1/(x-5))
原方程装换为 1+(1/(x-5))+1+(1/(x-9))=1+(1/(x-8))+1+(1/(x-6))
1/(x-5)+1/(x-9)=1/(x-8)+1/(x-6)
设x-7=y
1/(y+2)+1/(y-2)=1/(y-1)+1/(y+1)
2y/(y*y-4)=2y/(y*y-1)
y=0,x=7

回答(2):

(x-4)/(x-5)+(x-8)/(x-9)=(x-7)/(x-8)+(x-5)/(x-6)
答案1:当(x-4)与(x-7)下边的分号为大分号的时候。这种结果不成立,我试验了。
答案2:当(x-9)与(x-6)上边的分号为大分号的时候。
等式左边(x-9)提到(x-5)+(x-8)上分母为(x-5)+(x-8)(x-9)
等式右边(x-6)提到(x-5)+(x-8)上分母为(x-8)+(x-5)(x-6)
约分以后:(x-4)/(x-9)=(x-7)/(x-6)既(x-4)(x-6)=(x-7)(x-9)
x=39
相乘的过程我就不写了,x的平方不好打 。希望能帮到你!

回答(3):

令y=x-7,则,(y+3)/(y+2)+(y-1)/(y-2)=y/(y-1)+(y+2)/(y+1)
1+(1/(y+2))+1-(1/(y-2))=1+(1/y-1)+1+(1/y+1)
1/(y+2) +1/(y-2)=1/(y-1)+1/(y+1)
两边同分
2y/(y^2-4)=2y/(y^2-1)
当y=0时,等式成立,则x=7.
当y<>0时,等式不成立。所以x=7.