广义积分(下限-∞,上限∞)∫ 1⼀x^2+4x+5 dx怎么算呢?谢谢

2024-11-02 08:25:56
推荐回答(3个)
回答(1):

∫ 1/x^2+4x+5 dx=∫1/(x+2)²+1 dx=arctan(x+2)
所以,原式=∫<-∞,-2>1/x^2+4x+5 dx+ ∫<-2,+∞>1/x^2+4x+5 dx
=arctan(x+2)|<-∞,-2>+arctan(x+2)|<-2,+∞>
=0- (- π/2) + π/2- 0=π.

回答(2):

∫ 1/x^2+4x+5 dx
=∫ 1/(x+2)^2+1 dx
=arctan(x+2)(下限-∞,上限∞)=π/2-(-π/2)=π

回答(3):

原式=∫(-∞,+∞) d(x+2)/[(x+2)^2+1]
=arctan(x+2) |(-∞,+∞)
=π/2-(-π/2)