结果为:在定义域R内有界
解题过程如下:
∵定义域为R
令t=x^2>=0
则f=(t+1)/(t^2+1)=t/(t^2+1)+1/(t^2+1)
t=0时,f=1
t>0时,f=1/(t+1/t)+1/(t^2+1)
∵t+1/t>=2
∴0<1/(t+1/t)<=1/2
∵0<1/(t^2+1)<1
∴0 ∴在R内有界 有界函数判定方法: 设函数f(x)是某一个实数集A上有定义,如果存在正数M 对于一切X∈A都有不等式|f(x)|≤M的则称函数f(x)在A上有界,如果不存在这样定义的正数M则称函数f(x)在A上无界 设f为定义在D上的函数,若存在数M(L),使得对每一个x∈D有: ƒ(x)≤M(ƒ(x)≥L)。 则称ƒ在D上有上(下)界的函数,M(L)称为ƒ在D上的一个上(下)界。 根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。又若M(L)为ƒ在D上的上(下)界,则任何大于(小于)M(L)的数也是ƒ在D上的上(下)界。根据确界原理,ƒ在定义域上有上(下)确界 。 一个特例是有界数列,其中X是所有自然数所组成的集合N。所以,一个数列(a0,a1,a2, ... ) 是有界的。扩展资料
定义域为R,
令t=x^2>=0
则f=(t+1)/(t^2+1)=t/(t^2+1)+1/(t^2+1)
t=0时,f=1
t>0时,f=1/(t+1/t)+1/(t^2+1)
因为t+1/t>=2, 故0<1/(t+1/t)<=1/2
0<1/(t^2+1)<1
因此有:0
不等式的性质嘛。a>0,b>0,则a+b≥2√ab。