为什么要引入虚数 虚数有什么用

辛苦大神了
2024-11-07 10:46:45
推荐回答(3个)
回答(1):

“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字. 由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解.笛卡尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物.”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的.
欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示.后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路.现在,复数一般用来表示向量(有方向的数量),这在力学、地图学、航空学中的应用是十分广泛的.

回答(2):

什么是虚数
首先,假设有一根数轴,上面有两个反向的点:+1和-1。

这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就会变成-1。

这相当于两次逆时针旋转90度。

因此,我们可以得到下面的关系式:
(+1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1)
如果把+1消去,这个式子就变为:
(逆时针旋转90度)^2 = (-1)
将"逆时针旋转90度"记为 i :
i^2 = (-1)
这个式子很眼熟,它就是虚数的定义公式。
所以,我们可以知道,虚数 i 就是逆时针旋转90度,i 不是一个数,而是一个旋转量。
复数的定义
既然 i 表示旋转量,我们就可以用 i ,表示任何实数的旋转状态。

将实数轴看作横轴,虚数轴看作纵轴,就构成了一个二维平面。旋转到某一个角度的任何正实数,必然唯一对应这个平面中的某个点。
只要确定横坐标和纵坐标,比如( 1 , i ),就可以确定某个实数的旋转量(45度)。
数学家用一种特殊的表示方法,表示这个二维坐标:用 + 号把横坐标和纵坐标连接起来。比如,把 ( 1 , i ) 表示成 1 + i 。这种表示方法就叫做复数(complex number),其中 1 称为实数部,i 称为虚数部。
为什么要把二维坐标表示成这样呢,下一节告诉你原因。
虚数的作用:加法
虚数的引入,大大方便了涉及到旋转的计算。

比如,物理学需要计算"力的合成"。假定一个力是 3 + i,另一个力是1 + 3i ,请问它们的合成力是多少?

根据"平行四边形法则",你马上得到,合成力就是( 3 + i ) + ( 1 + 3i ) = ( 4 + 4i )。
这就是虚数加法的物理意义。
虚数的作用:乘法
如果涉及到旋转角度的改变,处理起来更方便。

比如,一条船的航向是3 + 4i 。
如果该船的航向,逆时针增加45度,请问新航向是多少?

45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):
( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )
所以,该船的新航向是-1 + 7i。
如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:
( 3 + 4i ) * i = ( -4 + 3i )
这就是虚数乘法的物理意义:改变旋转角度。

回答(3):

数,数系,数系的扩张
引入虚数,数学会更完整。举例来说,
N次方程就有N个根