令:x=tant则:dx=sec²t∫dx/(1+x²)² =∫sec²tdt/(1+tan²)²=∫1/sec²t dt =∫cos²t dt =∫1/2+(1/2)*cos2t dt=t/2+(1/4)*sin2t+C再把t换回去,t=arctanx结果为arctanx/2+(1/4)*sin2arctanx+C