算法是一个有穷规则的集合,这些规则确定了解决某类问题的一个运算序列。对于该类问题的任何初始输入值,它都能机械地一步一步地执行计算,经过有限步骤后终止计算并产生输出结果。归纳起来,算法具有以下基本特征:
(1) 有穷性:一个算法必须在执行有限个操作步骤后终止;
(2) 确定性:算法中每一步的含义必须是确切的,不可出现任何二义性;
(3) 有效性:算法中的每一步操作都应该能有效执行,一个不可执行的操作是无效的。例如,一个数被0除的操作就是无效的,应当避免这种操作。
(4) 有零个或多个输入:这里的输入是指在算法开始之前所需要的初始数据。这些输入的多少取决于特定的问题。例如,例l-1的算法中有2个输入,即需要输入a和b两个初始数据,而例l-2的算法中则需要输入四个初始数据。有些特殊算法也可以没有输入。
(5) 有一个或多个输出:所谓输出是指与输入有某种特定关系的量,在一个完整的算法中至少会有一个输出。如上述关于算法的三个例子中,每个都有输出。试想,如果例1-3中没有 "输出n的当前值"这一步,这个算法将毫无意义。