解:/ 表示分数线原式={[(x²-2x+1)/(x²-1)]+1/x}÷[1/(x+1)]={[(x-1)²]/[(x+1)(x-1)]+1/x}×(x+1)={[(x-1)/(x+1)]+1/x}×(x+1)=[(x-1)/(x+1)]×(x+1)+[(x+1)/x]=(x-1)+[(x+1)/x]=[x(x-1)+(x+1)]/x=(x²-x+x+1)/x=(x²+1)/x当x=-2时原式=[(-2)²+1]/(-2)=(4+1)/(-2)= -5/2