三极管原理--我见过最通俗讲法
三极管原理
对三极管放大作用的理解,切记一点:能量不会无缘无故的产生,所以,三极管一定不会产生能量。
但三极管厉害的地方在于:它可以通过小电流控制大电流。
放大的原理就在于:通过小的交流输入,控制大的静态直流。
假设三极管是个大坝,这个大坝奇怪的地方是,有两个阀门,一个大阀门,一个小阀门。小阀门可以用人力打开,大阀门很重,人力是打不开的,只能通过小阀门的水力打开。
所以,平常的工作流程便是,每当放水的时候,人们就打开小阀门,很小的水流涓涓流出,这涓涓细流冲击大阀门的开关,大阀门随之打开,汹涌的江水滔滔流下。
如果不停地改变小阀门开启的大小,那么大阀门也相应地不停改变,假若能严格地按比例改变,那么,完美的控制就完成了。
在这里,Ube就是小水流,Uce就是大水流,人就是输入信号。当然,如果把水流比为电流的话,会更确切,因为三极管毕竟是一个电流控制元件。
如果某一天,天气很旱,江水没有了,也就是大的水流那边是空的。管理员这时候打开了小阀门,尽管小阀门还是一如既往地冲击大阀门,并使之开启,但因为没有水流的存在,所以,并没有水流出来。这就是三极管中的截止区。
饱和区是一样的,因为此时江水达到了很大很大的程度,管理员开的阀门大小已经没用了。如果不开阀门江水就自己冲开了,这就是二极管的击穿。
在模拟电路中,一般阀门是半开的,通过控制其开启大小来决定输出水流的大小。没有信号的时候,水流也会流,所以,不工作的时候,也会有功耗。
而在数字电路中,阀门则处于开或是关两个状态。当不工作的时候,阀门是完全关闭的,没有功耗。
你后面的那些关于饱和区、截止区的比喻描述的有点问题,但是你肯定是知道这些原理的,呵呵。
引用你的比喻,我修改一下吧:
截止区:应该是那个小的阀门开启的还不够(Ube
饱和区:应该是小的阀门开启的太大了(Ube>Uce>Uon),以至于大阀门里放出
的水流已经到了它极限的流量,这时候,你增大 小阀门的开启程度(增大Ib),从大阀门里流出的水流量不再增大(Ic不变);但是 你关小 小阀门(降低Ube直至Ube
线性区:就是水流处于可调节的状态。
击穿区:比如有水流存在一个水库中,水位太高(相应与Vce太大),导致有缺口产生,水流流出。而且,随着小阀门的开启,这个击穿电压变低,就是更容易击穿了。
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
术语说明
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
一、三极管
三极管是两个PN结共居于一块半导体材料上,因为每个半导体三极管都有两个PN结,所以又称为双极结晶体管。
三极管实际就是把两个二极管同极相连。它是电流控制元件,利用基区窄小的特殊结构,通过载流子的扩散和复合,实现了基极电流对集电极电流的控制,使三极管有更强的控制能力。按照内部结构来区分,可以把三极管分为PNP管和NPN管,两只管按照一定的方式连接起来,就可以组成对管,具有更强的工作能力。如果按照三极管的功耗来区别,可以把它们分为小功率三极管、中功率三极管、大功率三极管等。
二、作用与应用
三极管具有对电流信号的放大作用和开关控制作用。所以,三极管可以用来放大信号和控制电流的通断。在电源、信号处理等地方都可以看到三极管,集成电路也是由许多三极管按照一定的电路形式连接起来,具有某些用途的元件。三极管是最重要的电流放大元件。
三、三极管的重要参数
1、β值
β值是三极管最重要的参数,因为β值描述的是三极管对电流信号放大能力的大小。β值越高,对小信号的放大能力越强,反之亦然;但β值不能做得很大,因为太大,三极管的性能不太稳定,通常β值应该选择30至80为宜。一般来说,三极管的β值不是一个特定的指,它一般伴随着元件的工作状态而小幅度地改变。
2、极间反向电流
极间反向电流越小,三极管的稳定性越高。
3、三极管反向击穿特性:
三极管是由两个PN结组成的,如果反向电压超过额定数值,就会像二极管那样被击穿,使性能下降或永久损坏。
4、工作频率
三极管的β值只是在一定的工作频率范围内才保持不变,如果超过频率范围,它们就会随着频率的升高而急剧下降。
四、分类
按放大原理的不同,三极管分为双极性三极管(BJT,Bipolar Junction Transistor )和单极性(MOS/MES型: Metal-Oxide-Semiconductor or MEtal Semiconductor)三极管。BJT中有两种载流子参与导电,而在MOS型中只有一种载流子导电。BJT一般是电流控制器件,而MOS型一般是电压控制器件。
五,使用
搞数字电路的使用三极管大都当开关用,只要保证三极管工作在饱和区和截止区就可以啦!
测判三极管的口诀
三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:“三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准,动嘴巴。”下面让我们逐句进行解释吧。
一、 三颠倒,找基极
大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。
测试三极管要使用万用电表的欧姆挡,并选择R×100或R×1k挡位。图2绘出了万用电表欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。
假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基极(参看图1、图2不难理解它的道理)。
二、 PN结,定管型
找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被测管即为PNP型。
三、 顺箭头,偏转大
找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透电流ICEO的方法确定集电极c和发射极e。
(1) 对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔→c极→b极→e极→红表笔,电流流向正好与三极管符号中的箭头方向一致(“顺箭头”),所以此时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。
(2) 对于PNP型的三极管,道理也类似于NPN型,其电流流向一定是:黑表笔→e极→b极→c极→红表笔,其电流流向也与三极管符号中的箭头方向一致,所以此时黑表笔所接的一定是发射极e,红表笔所接的一定是集电极c(参看图1、图3可知)。
四、 测不出,动嘴巴
若在“顺箭头,偏转大”的测量过程中,若由于颠倒前后的两次测量指针偏转均太小难以区分时,就要“动嘴巴”了。具体方法是:在“顺箭头,偏转大”的两次测量中,用两只手分别捏住两表笔与管脚的结合部,用嘴巴含住(或用舌头抵住)基电极b,仍用“顺箭头,偏转大”的判别方法即可区分开集电极c与发射极e。其中人体起到直流偏置电阻的作用,目的是使效果更加明显。
半导体三极管的分类
半导体三极管亦称双极型晶体管,其种类非常多。按照结构工艺分类,有PNP和NPN型;按照制造材料分类,有锗管和硅管;按照工作频率分类,有低频管和高频管;一般低频管用以处理频率在3MHz以下的电路中,高频管的工作频率可以达到几百兆赫。按照允许耗散的功率大小分类,有小功率管和大功率管;一般小功率管的额定功耗在1W以下,而大功率管的额定功耗可达几十瓦以上。常见的半导体三极管外型见图2.5.1。
半导体三极管的主要参数
共射电流放大系数β。β值一般在20~200,它是表征三极管电流放大作用的最主要的参数。
理论原理
晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和锗PNP两种三极管,(其中,N表示在高纯度硅中加入磷,是指取代一些硅原子,在电压刺激下产生自由电子导电,而p是加入硼取代硅,产生大量空穴利于导电)。两者除了电源极性不同外,其工作原理都是相同的,
1.三极管偏置电路_固定偏置电路
如上图为三极管常用电路中的固定偏置电路:rb的作用是用来控制晶体管的基极电路ib,ib称为偏流,rb称为偏流电阻或偏置电阻.改变rb的值,就可以改变ib的大小.图中rb固定,称为固定偏置电阻.
这种电路简单,使用元件少,但是由于晶体管的热稳定性差,尽管偏置电阻rb固定,当温度升高时,晶体管的iceo急剧增加,使ie也增加,晶体管工作点发生变化.所以为三极管常用电路中的电压负反馈偏置电路:晶体管的基极偏置电阻接于集电极.电路好象与固定偏置电路在形式上没有多大差别,然而正是这一点,恰恰起到了自动补偿工作点漂移的效果.从图中可见,当温度升高时,ic增大,那么要增大,使得uce下降,通过rb,必然ib也随之减小,ib的减小ic的减小,从而稳定了ic,保证了uce基本不变.
过程,称为负反馈过程,电路就是为三极管常用电路中的分压式电流负反馈偏置电路:电路通过发射极回路串入电阻re和基极回路由电阻r1,r2的分压关系固定基极电位以稳定工作点,称为分压式电流负反馈偏置电路.下面分析工作点稳定过程.
当温度升高,iceo增大使ic增加.ie也随之增加.这时发射极电阻re上的压降ue=ie*re也随之升高.由于基极电位ub是固定的,晶体管发射结ube=ub-ue,所以就减小了.
过程与电压负反馈类似,都能起到稳定工作点的目的.但是,电路的反馈是ue=ie*re,取决于输出电流,与输出电压无关,所以电路中,上,下基极偏置电阻r1,r2的阻值小些,使基极电位ub主要由它们的分压值决定.发射极上的反馈电阻re越大,负反馈越深,稳定性越好.不过re太大,在电源电压不变的情况下,会使uce下降,影响放大,所以.
如果输入交流信号,也会在re上引起压降,降低了放大器的放大倍数,为了避免这一点,re两端并联了一个电容ce,起交流旁路作用.
三极管是在半导体锗或硅的单晶上制备两个能相互影响的PN结,中间的区叫基区,两边的区域叫发射区和集电区,这三部分各有一条电极引线,分别叫基极、发射极和集电极,是能起放大、振荡或开关等作用的半导体电子器件。
动画形象解读三极管的工作原理