不定积分——∫dx⼀(x*(x^2-1)^(1⼀2))

不定积分——∫dx/(x*(x^2-1)^(1/2))
2024-11-07 00:26:13
推荐回答(3个)
回答(1):

∫ dx/[x√(x²-1)],令x = secy,dx = secy*tany dy
√(x²-1) = √(sec²y-1) = √(tan²y) = tany...(1) 或 -tany...(2)
siny = √(x²-1) / x,cosy = 1/x
若x>1,则0≤y<π/2
原式= ∫ secy*tany / [secy*(tany)] dy,第(1)种情况
= ∫ dy = y + C
= arcsec(x) + C

若x<-1,π/2原式= ∫ secy*tany / [secy*(-tany)] dy,第(2)种情况
= -y + C
= -arcsecx + C

对于x<-1,π/2设x = -z,z>1,dx = -dz
原式= ∫ -dz/[(-z)√(z²-1)]
= ∫ dz/[z√(z²-1)],z = secy
= arcsec(z) + C
= arcsec(-x) + C
= π - arcsecx + C
= -arcsecx + C'',C''=π+C

综合∫ dx/[x√(x²-1)]有两个答案,分别是:
= arcsec(x) + C,当x>1
= -arcsecx + C,当x<-1

回答(2):

∫dx/[x√(x^2-1)]
=∫dx/[x^2√(1-1/x^2)]
=-∫d(1/x)/√[1-(1/x)^2]
t=1/x
=∫-dt/√(1-t^2)
=arccost +C
=arccos(1/x)+C

回答(3):

=arctan((x^2 - 1)^(1/2))+C