对积分上限函数的求导就是把其上限带入函数式子中,再乘以其上限的导函数
F(x)=∫(0,x^2) e^(-t^2)dt,
所以F'(x)=e^(-x^4)*(x^2)'
=2x * e^(-x^4)
于是F'(2)= 2(2) * e^(-2^4)
= 4 * e^(-16)
F(x) = ∫(0->x²) e^(-t²) dt
F'(x) = d(x²)/dx * e^[-(x²)²] - d(0)/dx * e^(-0²)
= 2x * e^(-x^4) - 0
= 2x * e^(-x^4)
F'(2)
= 2(2) * e^(-2^4)
= 4 * e^(-16)
= 4/e^16