原式=∫[0,π/2]cscxdx=ln|cscx-cotx||[0,π/2]=+∞
最后一个等号是令x=π/2减去令x->0+得到的
呵呵看错题了,不过同意上面的说法,这个广义积分确实是发散的,积分值为+∞
∫[0,π/2]1/sin^2xdx
=∫[0,π/2]csc^2xdx
=-cotx[0,π/2]
=∞
这个积分不存在呀
积分:1/sinxdx
=积分:1/(2sinx/2cosx/2)dx
=1/2积分:(sinx/2^2+cosx/2^2)/(sinx/2cosx/2)dx
=1/2积分:(tanx/2+cotx/2)dx
=1/2*[(-2)ln|cosx/2|+2ln|sinx/2|)+C
=ln|sinx/2|-ln|cosx/2|+C
=ln|tanx/2|+C
∫[0,π/2] 1/sinx dx
=ln|tan(π/2/2)|-ln|tan(0/2)|
=0+∞=∞