求极限:lim(x→0)(1⼀x^2)[1-cosx(cos2x)^(1⼀2)(cos3x)^(1⼀3)...(cosnx)^(1⼀n)]

2024-11-09 00:12:56
推荐回答(1个)
回答(1):

解:需要用到的知识点,等价无穷小+重要极限+洛必达法则
首先证明:当x→0,(cosnx)^(1/n) ~ 1-(n/2)*x^2 (等价无穷小)
这是因为,lim(x→0) cosnx/[1-(n/2)*x^2]^n,应用洛必达法则,上下同时求导,得
上式 = lim(x→0)(-nsinnx)/[n*[(1-(n/2)*x^2)^(n-1)]*(-n*x) = lim(x→0)sinnx/nx = 1

于是
所求极限的分子可等价于
1-cosx(cos2x)^(1/2)(cos3x)^(1/3)...(cosnx)^(1/n)
~1-(1-(1/2)*x^2)*(1-(2/2)*x^2)*...*(1-(n/2)*x^n) 展开
~1-(1-(1/2+2/2+3/2+...+n/2)*x^2 + o(x^4)) ~ (1/2+2/2+3/2+...+n/2)*x^2 - o(x^4)
因此所求极限=(1/2+2/2+3/2+...+n/2)=(n+1)*n/2/2 = n*(n+1)/4