a^2+b^2 ≥ 2ab
√(ab)≤(a+b)/2 ≤(a^2+b^2)/2
a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac
a+b+c≥3×三次根号abc
均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。
扩展资料:
特例
⑴对实数a,b,有 (当且仅当a=b时取“=”号), (当且仅当a=-b时取“=”号)
⑵对非负实数a,b,有 ,即
⑶对非负实数a,b,有
⑷对非负实数a,b,a≥b,有
⑸对非负实数a,b,有
⑹对实数a,b,有
⑺对实数a,b,c,有
⑻对非负数a,b,有
⑼对非负数a,b,c,有 ;在几个特例中,最著名的当属算术—几何均值不等式(AM-GM不等式):
当n=2时,上式即:;当且仅当 时,等号成立。
根据均值不等式的简化,有一个简单结论,即 。
a^2+b^2 ≥ 2ab
√(ab)≤(a+b)/2 ≤(a^2+b^2)/2
a^2+b^2+c^2≥(a+b+c)^2/3≥ab+bc+ac
a+b+c≥3×三次根号abc
a²+b²≥2ab
(a²+b²)÷2≥(a+b)÷2≥√ab
a²+b²+c²≥(a+b+c)²÷3≥ab+bc+ac
关注秦爸说,天天学数学
a+b=2√ab
a²+b²=ab