1⼀1*2*3+1⼀2*3*4+1⼀3*4*5+1⼀4*5*6的简便计算方法

亲们帮帮忙哈!!!急啊!!!!!!!谢谢啦 要有详细过程的
2024-10-29 07:14:49
推荐回答(5个)
回答(1):

*****1/[n(n+1)(n+2)]=0.5[1/n-2/(n+1)+1/(n+2)]******
则原式子
=0.5(1-2/2+1/3+1/2-2/3+1/4+1/3-2/4+1/5+1/4-2/5+1/6)
=0.5(1-1/2-1/5+1/6)
=7/30

回答(2):

原式=(1-1/2-1/3-1/4-1/5)*(1/2+1/3+1/4+1/5)+1/6*(1-1/2-1/3-1/4-1/5)
-(1-1/2-1/3-1/4-1/5)*(1/2+1/3+1/4+1/5)+1/6*(1/2+1/3+1/4+1/5)
=1/6*(1-1/2-1/3-1/4-1/5+1/2+1/3+1/4+1/5)
=1/6*1
=1/6

回答(3):

1+2+3+4+5+6+5+4+3+2+1
=(1+6)×2+3×5
=14+15
=29

回答(4):

1+2+3+4+5+6+5+4+3+2+1
=(1+2+3+4)+5+6+5+(4+3+2+1)
=10+5+6+5+10
=10+(5+5)+6+10
=30+6
=36

回答(5):

1、这是一道六年级的数奥题,要用“分数的拆分法”来解答才行。
2、就是说,把题目中的所有分数拆成两个分数相减的形式,形成加减相互抵消,从而达到不同分的目的。
3、这道题首先把题中的分数拆分成下面的样子:
1/1*2*3=[1/(1×2)-1/(2×3)]×1/2
1/2*3*4=[1/(2×3)-1/(3×4)]×1/2
1/3*4*5=[1/(3×4)-1/(4×5)]×1/2
1/4*5*6=[1/(4×5)-1/(5×6)]×1/2

4、计算如下:
1/1*2*3+1/2*3*4+1/3*4*5+1/4*5*6
=[1/(1×2)-1/(2×3)]×1/2+[1/(2×3)-1/(3×4)]×1/2+[1/(3×4)-1/(4×5)]×1/2+[1/(4×5)-1/(5×6)]×1/2
=[1/(1×2)-1/(2×3)+1/(2×3)-1/(3×4)+1/(3×4)-1/(4×5)+1/(4×5)-1/(5×6)]×1/2……………中间部分加减分数全部抵消啦
=[1/(1×2)-1/(5×6)]×1/2……………只剩下首尾的分数
=(1/2-1/30)×1/2
=14/30×1/2
=7/30