这样理解【Dijkstra算法】对吗?

2024-11-07 13:46:32
推荐回答(2个)
回答(1):

dijkstra算法是动态规划算法

对于一个含有n个顶点和e条边的图来说,从某一个顶点Vi到其余任一顶点Vj的最短路径,可能是它们之间的边(Vi,Vj),也可能是经过k个中间顶点和k+1条边所形成的路径(1≤k≤n-2)。下面给出解决这个问题的Dijkstra算法思想。
设图G用邻接矩阵的方式存储在GA中,GA[i,j]=maxint表示Vi,Vj是不关联的,否则为权值(大于0的实数)。设集合S用来保存已求得最短路径的终点序号,初始时S=[Vi]表示只有源点,以后每求出一个终点Vj,就把它加入到集合中并作为新考虑的中间顶点。设数组dist[1..n]用来存储当前求得的最短路径,初始时Vi,Vj如果是关联的,则dist[j]等于权值,否则等于maxint,以后随着新考虑的中间顶点越来越多,dist[j]可能越来越小。再设一个与dist对应的数组path[1..n]用来存放当前最短路径的边,初始时为Vi到Vj的边,如果不存在边则为空。
执行时,先从S以外的顶点(即待求出最短路径的终点)所对应的dist数组元素中,找出其值最小的元素(假设为dist[m]),该元素值就是从源点Vi到终点Vm的最短路径长度,对应的path[m]中的顶点或边的序列即为最短路径。接着把Vm并入集合S中,然后以Vm作为新考虑的中间顶点,对S以外的每个顶点Vj,比较dist[m]+GA[m,j]与dist[j]的大小,若前者小,表明加入了新的中间顶点后可以得到更好的方案,即可求得更短的路径,则用它代替dist[j],同时把Vj或边(Vm,Vj)并入到path[j]中。重复以上过程n-2次,即可在dist数组中得到从源点到其余各终点的最段路径长度,对应的path数组中保存着相应的最段路径。
通过以上分析,dijkstra算法是动态规划算法,共划分n-2个阶段,状态转移方程为:
Dist[i]=min{dist[k]+GA[k,j],dist[j]}
其中k={k|min{dist[j]},j是集合s以外的点

回答(2):

嗯,随后再将点v加入集合S,再次执行这个过程,直到所有点加入点集时算法结束。