∫(x+1)/(x^2+x+1)dx
=∫[(x+1/2)+1/2]/(x^2+x+1)dx
=1/2*∫d(x^2+x+1)/(x^2+x+1)+∫(1/2)/[(x+1/2)^2+3/4)]dx
=1/2ln(x^2+x+1)+1/√3arctan(x+1/2)/(√3/2) +c
希望采纳!
∫(x+1)/(x^2+x+1)dx
=∫[(x+1/2)+1/2]/(x^2+x+1)dx
=1/2*∫d(x^2+x+1)/(x^2+x+1)+∫(1/2)/[(x+1/2)^2+3/4)]dx
=1/2ln(x^2+x+1)+1/√3arctan(x+1/2)/(√3/2) +c