∫1/cosxdx=∫ cosx/cos²xdx=∫ 1/(1-sin²x) d(sinx)=(1/2)∫ [1/(1+sinx)+1/(1-sinx)] d(sinx)=(1/2) [ln(1+sinx)-ln(1-sinx)] + C=ln √[(1+sinx)/(1-sinx)] + C=ln √(1+sinx)²/√(1-sin²x) + C=ln |(1+sinx)/cosx| + C=ln |tanx+secx| + CC为任意常数